
Seq.Align. Protein Function

Similar function
More than 25%
sequence identity

?
Similar 3D structure

?

Similar sequences produce similar proteins

Protein1 Protein2

?

Sequence Alignment

•Storing, retrieving and comparing DNA sequences in Databases.

•Comparing two or more sequences for similarities.

•Searching databases for related sequences and subsequences.

•Exploring frequently occurring patterns of nucleotides.

•Finding informative elements in protein and DNA sequences.

•Various experimental applications (reconstruction of DNA, etc.)

Motivation:

Exact Pattern Matching

• Given a pattern P of length m and a (longer)
string T of length n, find all the occurrences
of P in T.

• Naïve algorithm: O(m*n)
• Boyer-Moore, Knuth-Pratt-Morris:

O(n+m)

Alignment - inexact matching
Substitution - replacing a sequence base by another.
Insertion - an insertion of a base (letter) or

several bases to the sequence.
Deletion - deleting a base (or more) from the

sequence.

(Insertion and deletion are the reverse of one another)

Seq. Align. Score

Commonly used matrices:
PAM250, BLOSUM64

Global Alignment

Global Alignment
INPUT: Two sequences S and T of roughly the same length.
QUESTION: What is the maximum similarity between them?

Find one of the best alignments.

The IDEA
s[1…n]
t[1…m]

To align s[1...i] with t[1…j] we have three choices:

* align s[1…i-1] with t[1…j-1] and match s[i] with t[j]

* align s[1…i] with t[1…j-1] and match a space with t[j]

* align s[1…i-1] with t[1…j] and match s[i] with a space

s[1…i-1] i
t[1…j-1] j

s[1… i] -
t[1…j-1] j

s[1…i-1] i
t[1… j] -

Recursive Relation

Define: scoring matrix m(a,b) a,b � ∑ U {-}

Define: Hij the best score of alignment between s[1…i] and t[1…j]

for 1 <= i <= n, 1 <= j <= m

Hi-1j-1 + m(si,tj)
Hij = max Hij-1 + m(-,tj)

Hi-1j + m(si,-)

Hi0 = ∑0,k m(sk,-)

H0j = ∑0,k m(-,tk)

Needleman-Wunsch 1970

Optimal alignment score = Hnm

t

s

I
T

s3
t4

I
-

s3
-

-
T

-
t4

Local Alignment
Local Alignment
INPUT: Two sequences S and T .
QUESTION: What is the maximum similarity between a

subsequence of S and a subsequence of T ?
Find most similar subsequences.

Recursive Relation

for 1 <= i <= n, 1 <= j <= m

Hi-1j-1 + m(si,tj)
Hij-1 + m(-,tj)
Hi-1j + m(si,-)

0

Hi0 = 0

H0j = 0
Optimal alignment score = maxij Hij

Smith-Waterman 1981

Hij = max

Penalties should be negative

Sequence Alignment

Complexity:
Time O(n*m)

Space O(n*m) (exist algorithm with O(min(n,m)))

Ends free alignment

Ends free alignment
INPUT: Two equences S and T (possibly of different length).
QUESTION: Find one of the best alignments between
subsequences of S and T when at least one of these
subsequences is a prefix of the original sequence and one
(not necessarily the other) is a suffix.

or

Gap Alignment

Definition: A gap is the maximal contiguous run of spaces in a single
sequence within a given alignment.The length of a gap is the number of
indel operations on it. A gap penalty function is a function that measure
the cost of a gap as a (nonlinear) function of its length.

Gap penalty
INPUT: Two sequences S and T (possibly of different length).
QUESTION: Find one of the best alignments between the two

sequences using the gap penalty function.

Affine Gap: Wtotal = Wg + qWs

Wg – weight to open the gap

Ws – weight to extend the gap

What Kind of Alignment to Use?

• The same protein from the different
organisms.

• Two different proteins sharing the same
function.

• Protein domain against a database of
complete proteins.

• Protein against a database of small patterns
(functional units)

• ...

Sequence Alignment vs.
Database

• Task: Given a query sequence and
millions of database records, find the
optimal alignment between the query and
a record

ACTTTTGGTGACTGTAC

Sequence Alignment vs.
Database

• Tool: Given two sequences,
there exists an algorithm to
find the best alignment.

• Naïve Solution: Apply algorithm to
each of the records, one by one

Sequence Alignment vs.
Database

• Problem: An exact algorithm is too slow
to run millions of times (even linear time
algorithm will run slowly on a huge DB)

• Solution:
– Run in parallel (expensive).
– Use a fast (heuristic) method to discard irrelevant

records. Then apply the exact algorithm to the
remaining few.

Sequence Alignment vs.
Database

General Strategy of Heuristic Algorithms:

-Homologous sequences are expected to contain un-gapped (at
least) short segments (probably with substitutions, but without ins/dels)

-Preprocess DB into some fast access data structure of short
segments.

FASTA Idea

• Idea: a good alignment probably matches
some identical ‘words’ (ktups)

• Example:
Database record:
ACTTGTAGATACAAAATGTG

Aligned query sequence:
A-TTGTCG-TACAA-ATCTGT

Matching words of size 4

Dictionaries of Words

ACTTGTAGATAC Is translated to the dictionary:
ACTT,

CTTG,

TTGT,

TGTA…
Dictionaries of well aligned sequences share

words.

FASTA Stage I
• Prepare dictionary for db sequence (in

advance)
• Upon query:

– Prepare dictionary for query sequence
– For each DB record:

• Find matching words
• Search for long diagonal runs

of matching words
• Init-1 score: longest run
• Discard record if low score

*= matching word

Position in query

Position in
DB record

* * *
*
*

* *

* *
*

* *

FASTA stage II

• Good alignment – path
through many runs, with
short connections

• Assign weights to runs(+)
and connections(-)

• Find a path of max weight
• Init-n score – total path

weight
• Discard record if low score

FASTA Stage III

• Improve Init-1. Apply an
exact algorithm around
Init-1 diagonal within a
given width band.

• Init-1 Opt-score – new
weight

• Discard record if low
score

FASTA final stage

• Apply an exact algorithm to surviving
records, computing the final alignment
score.

P-Value

The observed number of random records
achieving E-value E or better (smaller) is
distributed Poisson(E)

Prob(r such records) =

Note: The model assumes an I.I.D. trial for
each database record

()
!

exp
r

EE r−

BLAST (Basic Local Alignment Search Tool)

Approximate Matches

BLAST:
Words are allowed to contain inexact
matching.

Example:
In the polypeptide sequence IHAVEADREAM
The 4-long word HAVE starting at position 2

may match
HAVE,RAVE,HIVE,HALE,…

Approximate Matches

For each word from DB generate similar
words (according to the substitution
matrix) and store them in a look-up table.

• Find approximately matching word pairs
• Extend word pairs as much as possible,

i.e., as long as the total weight increases
• Result: High-scoring Segment Pairs (HSPs)

THEFIRSTLINIHAVEADREAMESIRPATRICKREAD

INVIEIAMDEADMEATTNAMHEWASNINETEEN

BLAST Stage I

BLAST Stage II

• Try to connect HSPs by aligning the
sequences in between them:

THEFIRSTLINIHAVEADREA____M_ESIRPATRICKREAD

INVIEIAMDEADMEATTNAMHEW___ASNINETEEN

PAM250

M. Dayhoff Scoring Matrices
Point Accepted Mutations or PAM matrices

Proteins with 85% identity were used ->
the function is not significantly changed ->

the mutations are “accepted”

PAM units – the measure of the amount of
evolutionary distance between two amino acid
sequences.

One PAM unit – S1 has converted (mutated) to S2
with an average of one accepted point-mutation event
per 100 amino acids.

pa (=Na/N) – probability of occurrence of amino acid ‘a’
over a large, sufficiently varied, data set.

∑a pa = 1

fab – the number of times the mutation a <-> b was observed to
occur.

fa = ∑ b!=a fab - the total number of mutations in which a was
involved

f = ∑ a fa - the total number of amino acid occurrences
involved in mutations (twice the number of
mutations).

1) Probability matrix

2) Scoring matrix

Assumptions –

(a) 1 in 100 amino acids on average is changed.

(b) mutations are position independent.

(c) mutations are independent on its past.

The probability that a mutation contains ‘a’: fa / (f/2)

The probability that a mutation originates from ‘a’: 0.5 * fa / (f/2) =fa / f

ma = (fa / f) * 1/(100 * pa) relative mutability of amino acid ‘a’.
It is the probability that the given amino acid
will change in the evolutionary period of interest.

M1
aa =1- ma - the probablity of ‘a’ to remain unchanged.

M1
ab = Pr(a -> b) = Pr(a -> b | a changed) Pr(a changed)=

= (fab/fa)ma

Easy to see:

∑ b M1
ab =1 = M1

aa + ∑ b!=a (fab/fa)ma = 1- ma + ma /fa∑ b!=a fab = 1

M1 - 20x20 probability matrix

M1
ab - the probability of amino acid ‘a’ changing into ‘b’

during one PAM unit.

What is the probability that ‘a’ mutates into ‘b’ in two PAM
units of evolution?

a->c->b or a->d-> …

∑ c M1
ac M1

cb = M2
ab -> M2 , M3 , M4 … M250 …

k->∞ Mk converges to a matrix with identical rows.

Mk
ac = pc - no matter what amino acid you start with, after a long

period of evolution the resulting amino acid will be ‘c’
with probability pc .

PAM-kab = Mk
ab / pb - probability that a pair ‘ab’ is a mutation as

opposed to being a random occurrence
(likelihood or odds ratio).

If PAM-kab >1 b replaces a more frequently than b just
appears by chance.

Mab / pb = [(fab/fa)ma] / pb = (fab/fa) fa / (f * 100 * pa * pb)
= fab/ (f * 100 * pa * pb) = Mba / pa

The total alignment score is the product of Pam-kab .

To avoid accuracy problems: Pam-kab = 10 log Mk
ab / pb

-> The total alignment score is the sum of Pam-kab .

PAM-k matrix

Multiple Sequence Alignment

• Mult-Seq-Align allows to detect similarities which
cannot be detected with Pairwise-Seq-Align methods.

• Detection of family characteristics.

Three questions:

1. Scoring

2. Computation of Mult-Seq-Align.

3. Family representation.

Multiple Sequence Alignment

Scoring: SP (sum of pairs)

SP – the sum of pairwise scores of all pairs of symbols in
the column.

ρ3(-,A,A) = (-,A)+(-,A)+(A,A)

SP Total Score = Σ ρi

(-,-) = 0

Induced pairwise alignment

Induced pairwise alignment or
projection of a multiple alignment.

a(S1, S2)

a(S2, S3)

a(S1, S3)

(-,-) = 0

SP Total Score = Σi<j score[a(Si, Sj)]

Dyn.Prog. Solution

Dynamic Programming Solution

• The best multiple alignment of r sequences is calculated using an r-
dimensional hyper-cube

• The size of the hyper-cube is O(Πni)

• Time complexity O(2r nr) * O(computation of the ρ function).

• Exact problem is NP-Hard (metrics: sum-of-pairs or evolutionary tree).

more efficient solution is needed

Multiple Alignment from
Pairwise Alignments ?

Problem:

• The best pairwise alignment does not
necessary lead to the best multiple
alignment.

Pattern-APattern-X

Pattern-A Pattern-X

Pattern-B

Pattern-XPattern-BPattern-D

Pattern-D

S1

S3

S2

S1 S2 S1 S3 S2 S3

Pattern-A Pattern-B Pattern-D

Empty

Correct Solution
S1 S2 S3

Pattern-X

Center Star Alignment

S1
S2

S3

Sk

Sc

Sk-1 Sk-2

(a) Scoring scheme – distance.

(b) Scoring scheme satisfies the triangle
inequality: for any character a,b,c

dist(a,c) ≤ dist(a,b) + dist(b,c)

(in practice not all scoring matrices satisfy
the triangle inequality)

(c) D(Si, Sj) – score of the optimal pairwise
alignment.

(d) D(M) = Σi<j aM (Si, Sj) – score of the multiple
alignment M.

(e) aM(Si, Sj) – pairwise alignment/score induced
by M.

S1
S2

S3

Sk

Sc

Sk-1 Sk-2

The Center Star Algorithm:
(a) Find Sc minimizing Σi≠c D(Sc , Si).

(b) Iteratively construct the multiple alignment Mc:

1. Mc={Sc}

2. Add the sequences in S\{Sc} to Mc one by one
so that the induced alignment aMc(Sc, Si) of
every newly added sequence Si with Sc is
optimal. Add spaces, when needed, to all
pre-aligned sequences.

Running time:

* O(n2).

AC-BC
DCABC

AC--BC
DCAABC

AC--BC
DCA-BC
DCAABC

D(Mc) is at most twice the score of the D(Mopt)

D (Mc) / D (Mopt) ≤ 2(k-1)/k (< 2)

Proof:

(a) a(Si, Sj) ≥ D (Si, Sj) (any induced align. is not better than optimal align.)
aMc (Sc, Sj) = D (Sc, Sj)

(b) aMc (Si, Sj) ≤ aMc (Si, Sc) + aMc (Sc, Sj) = D (Si, Sc) + D (Sc, Sj)
(follows from the triangle inequality)

(c) 2 D(Mc) = Σi=1..k Σ j=1..k,j≠i aMc (Si , Sj) ≤

Σi=1..k Σ j=1..k,j≠i (aMc (Si, Sc) + aMc (Sc, Sj))=

2(k-1) Σj≠c aMc (Sc, Sj) =

2(k-1) Σj≠c D(Sc, Sj)

(d) k Σj=1..k,j≠c D(Sc, Sj) = Σi=1..k Σ j=1..k,j≠c D(Sc, Sj) ≤
Σi=1..k Σ j=1..k,j≠i D(Si, Sj) ≤
Σi=1..k Σ j=1..k,j≠i aMopt (Si, Sj) =

2 D(Mopt)

(e) → 2 D(Mc) ≤ 2(k-1) Σj≠c D(Sc, Sj)
k Σj≠c D(Sc, Sj) ≤ 2 D(Mopt)

→ D(Mc)/(k-1) ≤ Σj≠c D(Sc, Si)
Σj≠c D(Sc, Si) ≤ 2 D(Mopt)/k

→ D (Mc) / D (Mopt) ≤ 2(k-1)/k

