m C m TUCTUI -

Problem Definition

Input: a collection of 3D protein structures

Goal: find substructures common to two or more proteins

Motivation

"Two structures whisper, a full multiple structure alignment shouts out load." (A. Lesk)

- Multiple alignment vs. pairwise alignment
 - carries significantly more information
 - filers out the noisy and insignificant alignments

Applications

- Protein Structural classification
- Evolutionary analysis
- Functional and structural motif detection
- Structure prediction algorithms
 - Homology modeling
 - Threading

The problem is a hard one

Representing a protein structure as a set of 3D points

Multiple Structural Alignment

Largest Common Point set (LCP)

NP-hard (Akutsu, 2000)

Solution Space

The number of solutions might be exponential.

(k – maximum number of helices per molecule, m – number of molecules)

- The problem is more complicated due to:
 - Similar substructures instead of identical
 - Partial alignments (smaller common substructures)
 - Subset alignments

Subset Alignments Cofilin-like and Gelsolin-like Families

- The ensemble contains 12 sequentially nonredundant structures taken from the two families of the *Actin depolymerizing proteins* fold:
 - Cofilin-like (CL) family (4 molecules)
 - Gelsolin-like (GL) family (8 molecules)

A. Alignment of all 12 proteins

28 residues RMSD 1.9

C. Alignment of all 4 CL proteins

104 residues RMSD 1.2

B. Alignment of all 8 GL proteins

63 residues RMSD 1.5

D. Alignment of 3 CL proteins

PDB:1f7s _____ (acks this helix)

120 residues RMSD 1.3

Classification of DNA-Binding Proteins

- The ensemble contains 18 DNA-binding proteins that can be classified into 5 structural classes:
 - Classic zinc finger (7 molecules)
 - Histones (3 molecules)
 - Phage repressors (3 molecules)
 - Restriction endonuclease-like (3 molecules)
 - Winged helix (3 molecules).

🗌 - DNA

Partial Alignments Detection of Two Common Domains

Ensemble: 5 proteins that share two domains

Detection of Two Common Motifs

Pairwise-Based Methods

Pairwise-Based Methods

Two heuristics approaches

- Gerstein & Levitt, 1996
- Akutsu & Sim, 1999
- Guda *et al.*, 2001

Progressive Tree

- COMPARER (Sali & Blundell, 1990)
- STAMP (Russell & Barton, 1992)
- Ding *et al.*, 1994
- (May & Johnson, 1995)
- SSAPm (Taylor *et al.*, 1994)
- PrISM (Yang & Honig, 2000)

- Pros: provide a hierarchical clustering
- Cons: might miss significant alignments

Substructure common to all structures: none instead of **B**

Simultaneous Methods

- Combinatorial Assembly (Escalier *et al.*, 1998)
- MUSTA (Leibowitz *et al.*, 2001)
- MultiProt (Shatsky *et al.*, 2002)
- MASS (Dror *et al.*, 2003)

MUSTA, MultiProt & MASS

 Using a pivot to define a multiple alignment as a vector of 3D rigid transformations:

A multiple alignment between $M_1, M_2, M_3 \& M_4$ is defined by (T_2, T_3, T_4)

MUSTA:

MUltiple **ST**ructural **A**lignment

- Aligns **all** *m* input molecules
 - does not detect subset alignments
- The input is sets of 3D points
 - applicable to comparisons of drugs, protein active sites/surfaces/interfaces, etc.

Detection of Local Alignments: <u>Geometric Hashing</u>:

- Detects *k*-tuples of atoms whose configuration appears in all *m* molecules.
- In practice k=5.
- A 5-tuple is represented by a 9D vector of inter-distances.

Combinatorial Buckets (CBs):

- Only buckets with k-tuples from all molecules are considered.
- A path of *k*-tuples, one from each column, defines a local multiple alignment.
- <u>Worst Case</u>: Exponential number of alignments.

(3•3•2•4•3) local alignments

 Computes the pairwise transformations of the CBs

Clustering

- <u>Criteria</u>: transformations of the same cluster map relevant atoms to almost the same location
- <u>Distance between transformations</u> = number of atoms mapped to different locations
- Reduces the complexity of the CBs

Scoring

• Alignment's score = the size of the match list

MASS: Multiple 3D Alignment by Secondary Structures

- Considers all structures simultaneously
- Capable of detecting subset alignments
- Exploits secondary structure information
 - **Stability:** proteins are inherently composed of secondary structure elements (SSEs)
 - Efficiency: introduces great savings in structural description
 - Accuracy: filters noisy results

Can detect non-topological alignments

Example: Helix-bundle Ensemble

- <u>Ensemble</u>: 10 proteins from 4 different folds and 6 different superfamilies in SCOP
- <u>Runtime</u>: 48 seconds
- <u>Core</u>: 4-helical bundle

2hmzA	3inkC	2ссуА	256bA	1rcb	1le2	1bgeB	1bbhA	1aep	1flx
H1	H6	H3	H3	HЗ	H3	H5	H5	H1	H0
H2	H2, H3	H4	H4, H5	HO	H4	HO	H6	H4	H3
H3	H5	HO	HO	H4	HO	H6	HO	H3	H2
H4	HO	H1	H1	H2	H2	H4	H1	H2	H1

Match List: H - helix

SSE Representation

An SSE is represented by a 3D line segment with fuzzy endpoints

• The SSE *least-square line* minimizes $\sum_{i} d_{i}^{2}$

Detection of Local Basis Alignments

- A *basis* an ordered pair of SSEs.
- <u>Aim</u>: Detection of bases with similar 3D configuration that appear in several proteins
- <u>Geometric Hashing</u>:
 - Each basis is represented by a *fingerprint* which is invariant to 3D rotations and translations.

• A basis fingerprint is a 5D vector composed of:

- SSE types: helix, strand
- Midpoint distance
- Line distance
- Angle

The bases of all proteins are stored in a 5D grid, addressed by their fingerprints.

- For each bin in the grid:
 - Retrieve all the bases in that bin and in the adjacent bins and store them in a *Basis Bucket*

Protein i ₁	Protein i ₂	Protein i ₃	Protein i ₄	Protein i ₅
83	6	8		E
E		63	E	E

- Bases from different columns define a multiple local alignment between the respective proteins.
- Exponential number of local basis alignments

How do we compute a multiple basis alignment?

• How do we align two bases?

Reference Frame Superposition

For each basis we define a Cartesian reference frame

Atomic Superposition:

- Each SSE is represented by the list of its C_{α} atoms
- We iterate over all possibilities of simultaneously aligning the two pairs of atom lists.
- Atoms of matched SSEs are aligned consecutively
- Transformations are computed by a Least-Squares Fitting technique.
- The alignment with the largest match list and with RMSD < ε is selected.

RMSD Minimization

- Each SSE is represented by the list of its C_{α} atoms
- We iterate over all possibilities of simultaneously aligning the two pairs of atom lists.
- Atoms of matched SSEs are aligned consecutively
- Transformations are computed by a Least-Squares Fitting technique.
- The alignment with the largest match list and with RMSD < ε is selected.

RMSD Minimization

- Each SSE is represented by the list of its C_{α} atoms
- We iterate over all possibilities of simultaneously aligning the two pairs of atom lists.
- Atoms of matched SSEs are aligned consecutively
- Transformations are computed by a Least-Squares Fitting technique.
- The alignment with the largest match list and with RMSD < ε is selected.

RMSD Minimization

- Each SSE is represented by the list of its C_{α} atoms
- We iterate over all possibilities of simultaneously aligning the two pairs of atom lists.
- Atoms of matched SSEs are aligned consecutively
- Transformations are computed by a Least-Squares Fitting technique.
- The alignment with the largest match list and with RMSD < ε is selected.

Clustering

- RMSD Clustering: Similar to (Rarey et al., 1996)
- $O(p^2 \log p)$ where p = number of alignments

• **RMSD Clustering**: Similar to (Rarey et al., 1996)

$$G = (V, E)$$

$$V = \{T_i\}$$

$$E = \{e = edge(T_i, T_j) : Dist(T_i, T_j) \le \varepsilon\}$$

$$\omega(e) = \omega(edge(T_i, T_j)) = Dist(T_i, T_j)$$
where:
$$Dist(T_i, T_j) = RMSD(T_i(S), T_j(S))$$

$$S \subseteq Pivot$$

Residue Extension

• Extending the core of the alignments by detecting corresponding C_{α} atoms.

n -num of residues in a protein

Computing the Best Global Multiple Alignments

- What are the best global alignments? *No absolute answer*.
- Tradeoff:

Number of aligned molecules vs. core size

Two approaches to address the trade-off:

• The score of an alignment is defined as:

$$F(k,l) = k \cdot \begin{pmatrix} l \\ 2 \end{pmatrix} \qquad \begin{array}{c} l - \# \text{ molecules} \\ k - \text{ core size} \end{array}$$

• Providing the alignments with the largest cores for each possible number of aligned molecules.

# molecules	Alignments with largest core
2	
3	
4	

Evaluation

Polynomial-time heuristic

Complexity

Theoretical Worst Case Complexity

Construction of local pairwise alignments: $O(m^2s^4) \cdot O(1)$ Clustering: $O(m^2) \cdot O(s^8 \log s)$ Extension: $O(m^2s^4) \cdot O(n)$ Construction of multiple alignments: $O(ms^2) \cdot O(ms^2n)$

$$O(m^2s^4(s^4\log s+n))$$

- m Number of input molecules
- s Maximum number of SSEs in a protein
- n Maximum number of residues in a protein

Practical Complexity

- The runtime is influenced by the number of bases in a basis bucket
- The number of bases in a basis bucket depends on two factors:
 - the number of recurring motifs in a protein
 - the structural variance among the input proteins

MultiProt

- Considers all structures simultaneously
- Capable of detecting subset alignments
- Assumption:

A multiple alignment of proteins consists of at least short contiguous fragments of input points (>= 3 points).

Local Fragment Alignment

Detects all *ɛ*-congruent fragments pairs between the pivot and the other molecules (similar to *FlexProt*)

$$S^{FP} = \{F_i^p F_j^k(l) : k \neq p, RMSD_{opt}(F_i^p F_j^k(l)) \le \epsilon\}$$

Fragment Clustering

30-40% reduction

2D plot of all the ε-congruent fragments pairs:

- Detect all max cuts (using the Sweeping method)
- <u>Worst case</u>: O(n²) max cuts where n is the number of the pivot's points.

Computing the Best Global Multiple Alignments

- Given a *Cut*[α,β]: { $F_i^p F_j^k(l) : i \le \alpha, (i+l-1) \ge \beta$ } Select the high scoring fragment alignments
- Exact Solution hard
- <u>Heuristic</u>: For each molecule, M_k, select a transformation that has the largest pairwise alignment with the pivot molecule M_p.
- Rank the alignments with the largest cores for each possible number of aligned molecules.

Iterative Extension

Given:

set of molecules $(M_{i1},...,M_{ik})$ and transformations $(T_{i1},...,T_{ik})$

(1) Apply transformations : $M_{ij} = T_{ij} (M_{ij})$ (2) Compute optimal alignment with the pivot molecule. Recompute $(T_{i1}, ..., T_{ik})$.

(3) Go to (1)

Ranking Example: Cofilin-like and Gelsolin-like Families

- The ensemble contains 12 sequentially nonredundant structures taken from the two families of the *Actin depolymerizing proteins* fold:
 - Cofilin-like (CL) family (4 molecules)
 - Gelsolin-like (GL) family (8 molecules)

number of aligned molecules

maximal core size

A. Alignment of all 12 proteins

28 residues RMSD 1.9

C. Alignment of all 4 CL proteins

104 residues RMSD 1.2

B. Alignment of all 8 GL proteins

63 residues RMSD 1.5

D. Alignment of 3 CL proteins

PDB:1f7s______ lacks this helix

> 120 residues RMSD 1.3