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Abstract

We present MASS (Multiple Alignment by Secondary Structures), a novel, highly
efficient method for structural alignment of multiple protein molecules and detection
of common structural motifs. MASS is based on a two-level alignment, using both sec-
ondary structure and atomic representation. Utilizing secondary structure information
aids in filtering out noisy solutions and achieves efficiency and robustness.

Currently, only a few methods are available for addressing the multiple structural
alignment task. In addition to using secondary structure information, the advantage
of MASS as compared to these methods is that it is a combination of several impor-
tant characteristics: (i) while most existing methods are based on series of pairwise
comparisons, and thus might miss optimal global solutions, MASS is truly multiple,
considering all the molecules simultaneously; (ii) MASS is sequence order independent
and thus capable of detecting non-topological structural motifs; (iii) MASS is able to
detect not only structural motifs, shared by all input molecules, but also motifs shared
only by subsets of the molecules.

Here, we show the application of MASS to various protein ensembles. We demon-
strate its ability to handle a large number (order of tens) of molecules, to detect non-
topological motifs and to find biologically meaningful alignments within non predefined
subsets of the input. In particular, we show how by using conserved structural mo-
tifs, detected by MASS, one can guide protein-protein docking, which is a notoriously
difficult problem.

Availability. MASS is freely available on http://bioinfo3d.cs.tau.ac.il/MASS

Keywords. Multiple structural comparison, Non-sequential alignment, Non-topological
motif, Supersecondary structural motif, Docking, Protein structure classification, Large-
scale structure comparison
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The motivation for enhanced efficient structural alignment methods is quite obvious. It is
well established that the function of a protein may be inferred from its 3D structure (Branden
& Tooze, 1999). Thus, structural homology may imply a similar function. This observation
gave rise to the development of structural alignment tools, which are becoming increasingly
useful upon the acceleration of protein structure determination and the Structural Genomics
project. Structural alignment is a key tool for protein classification, evolutionary relationship
studies and structure prediction using homology modelling or threading.

Many methods have been developed to address the pairwise structural alignment task. See
(Brown et al., 1996; Lemmen & Lengauer, 2000; Eidhammer et al., 2001) for comprehensive
reviews . In contrast, only a few methods are available for aligning multiple structures.
However, it is clear that multiple alignment carries significantly more information and thus
is a much more powerful tool.

Most of the currently available methods for multiple structural alignment are pairwise-
based. They find common substructures through a series of comparisons between pairs
of molecules. These methods combine a pairwise structural alignment and a heuristic to
merge pairwise alignments into a multiple alignment, e.g. the center-star and the progressive
tree approaches that are widely used in multiple-sequence alignment (Gusfield, 1993). A
representative example is the method of Gerstein and Levitt. In this approach a central
structure is defined as the structure that on average is closest to all other structures. Then,
a multiple alignment is constructed based on aligning the remaining structures to the central
structure (Gerstein & Levitt, 1996). Other well-known methods of this type are SSAPm
(Taylor et al., 1994), PrISM (Yang & Honig, 2000b), STAMP (Russell & Barton, 1992),
(Sali & Blundell, 1990), (Ding et al., 1994), (May & Johnson, 1995), (Akutsu & Sim, 1999)
and (Guda et al., 2001).

The pairwise-based methods have the limitation that in each pairwise alignment the
only available information is about the two molecules involved. Thus, alignments that are
optimal for the whole input set might be missed, if they are not also optimal for every
pair (Eidhammer et al., 2001). Our method, MASS, is truly multiple. It considers all
the given structures simultaneously, rather than starting from pairwise alignments. Three
other truly-multiple methods are (Escalier et al., 1988), MUSTA (Leibowitz et al., 2001a;
Leibowitz et al., 2001b) and MultiProt (Shatsky et al., 2002). The algorithm of Escalier et
al. recursively finds common substructures of increasing size. It combines two common sets
of k atoms to build a common set of k + 1 atoms. MUSTA employs Geometric Hashing
(Lamdan & Wolfson, 1988; Nussinov & Wolfson, 1991) to find sets of k atoms, common to
the all input molecules, and then extends them into global common substructures. MultiProt
is based on short polypeptide fragment alignments. It detects structurally similar common
pieces, which are then extended to compute global alignments.

MASS is based on a two-level alignment, using both secondary structure and atomic
representation. The rationale behind this approach is that proteins are inherently composed
of secondary structure elements (SSEs). These are the regions within a protein that provide
its stabilizing scaffold, onto which the functional sites are grafted. Consequently, SSEs are
evolutionarily highly conserved while mutations frequently occur at flexible loops, which are
more difficult to align. Indeed, SSE representation has been successfully used in several
algorithms for pairwise alignment and database searching (Mitchel et al., 1989; Grindley
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et al., 1993; Holm & Sander, 1995; Koch et al., 1996; Alesker et al., 1996; Alexandrov &
Fischer, 1996; Lu, 2000; Yang & Honig, 2000a).

Structural description at the secondary structure level conveys both efficiency and accu-
racy: (i) Efficiency - The average number of SSEs in a globular protein (∼ 15) is smaller
by tenfold compared to the average number of residues (∼ 300). Representing proteins by
their SSEs introduces great savings in structural description, compared to residue or atomic
representation. As a result, protein structures can be treated more easily and significant im-
provement in computation can be achieved, especially when many structures are analyzed;
(ii) Accuracy and noise filtering - Due to the high atom density in protein molecules, any ran-
dom pair of proteins can be superimposed so that many of their atoms are aligned. However,
such an alignment is most probably biologically irrelevant. An SSE-based method avoids
this problem and is more likely to detect a motif of biological value, like a fold fingerprint or
a common binding site.

The majority of the methods for multiple structure alignment use dynamic programming
(Needleman & Wunsch, 1970). As a result they have the disadvantage of being dependent
on the sequence order of the polypeptide chain. MASS is a sequence-order independent
method 1. Thus, it can find non-topological alignments. Such a capability is essential for
detecting common structural motifs that exist due to convergent evolution, but with no fold
homology. In certain cases, where order dependency is preferred, there is also an option in
MASS to consider the order of the protein amino acids. This option can be used to cluster
topologically similar proteins or to obtain a structure-based sequence alignment.

Another important feature of MASS is the ability to detect subset alignments. In addition
to finding structural motifs shared by the whole given set of molecules, MASS detects motifs
shared by non-predefined subsets. This capability prevents the loss of good alignments due
to structural outliers and is highly useful in protein classification of heterogenous ensembles.

Here we describe the application of MASS to several types of protein ensembles. We
demonstrate that MASS successfully handles difficult cases of multiple structural alignment.
These include aligning large-scale protein ensembles (on the order of tens of proteins), detec-
tion of non-topological structural motifs, and detection of subset alignments, which is very
useful for protein structural classification. We further show how focusing on structurally con-
served motifs significantly improves the performance of protein-protein docking, suggesting
such an approach as a viable strategy in this extremely difficult problem.

1 Algorithm

Our goal is to detect structural motifs that are common to a group of proteins. This re-
quirement is more complicated than it appears at first sight. We would like the algorithm
to address the following questions: (i) Does the whole input set of proteins share any struc-
tural similarity? If so, what is the largest common substructure? (ii) Are there additional
significant common motifs, apart from the largest one? (iii) Are there structural motifs that
are shared by only a subset of the input proteins?

1In the first stage, MASS disregards the order of the SSEs along the polypeptide chain. In the second
stage, the backbone order of all Cα atoms is ignored
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Below we will give a more formal statement of the problem, followed by a description
of the MASS algorithm. A more detailed technical description followed by a comprehensive
runtime complexity analysis can be found in (Dror et al., 2003).

1.1 Problem Statement

If we represent a protein structure as a set of points in 3D space, where each point is the
center of a Cα atom, then the problem can be thought of as a variant of the largest common
point set (LCP) problem. In this problem we are given a collection of m sets of 3D points
and the task is to detect the largest point set of which a congruent copy appears in each of
the input sets. Unfortunately, this problem is known to be NP-hard (Akutsu & Halldorsson,
2000).

The LCP formulation above is not suitable for practical applications. It assumes that
the positions of all atoms are known precisely and searches for an exact alignment between
common substructures. However, for molecular structures, atom positions are not known
exactly and an exact alignment may be impossible to find. Therefore, it is more practical to
detect the largest point set of which an almost-congruent copy appears in each of the input
sets. Two point-sets are said to be almost-congruent if the distance between them is below a
predefined threshold. One of the most commonly used distance functions is the Root Mean
Square Deviation (RMSD) (Kaindl & Steipe, 1997).

We actually wish to address an even more complicated task. A biologically meaningful
motif might not be the largest common substructure. Thus, one will be interested to find
smaller common substructures as well. However, in practice there is no need to detect all
possible common substructures. A better approach is to detect the r largest ones or all
common substructures above a certain size.

The task is further complicated by the requirement to detect not only substructures com-
mon to the whole given set of molecules, but also substructures shared by non-predefined
subsets of the input molecules (subset alignments). This requirement complicates the prob-
lem since the number of subsets is exponential in the number of the input molecules. In
addition, the goal should be redefined. It may be impractical to supply the end-user all
common substructures for each possible subset of the input molecules. Even outputting just
the largest common substructure for each subset may be infeasible. It is better to rank the
solutions according to some scoring function and to output the highest scoring ones. How-
ever, no one specific scoring function fits all. The reason is that several trade-offs exist, e.g.
(i) number of aligned molecules vs. core size; and (ii) core size vs. the size of the smallest
participating molecule. An explanation of how these trade-offs are addressed in MASS is
given below.

Below we propose a heuristic algorithm for solving this hard problem. The algorithm runs
in polynomial time and yields good results.
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1.2 Algorithm Outline

As was discussed in section 1.1, the problem that we are trying to solve is NP-hard. There-
fore, to reduce the runtime complexity we exploit the fact that the structures to be compared
are not mere point sets in 3D space, but protein structures. Protein structures are composed
of secondary structure elements (SSEs). The number of SSEs in a protein is smaller by
tenfold compared to the number of residues. Thus, structural description at the secondary
structure level is significantly reduced compared to the Cα-atomic level, and can lead to
considerable savings in computation, especially when many structures are analyzed.

The algorithm is based on a two-level alignment, using both secondary structure and
atomic representation (see Figure 1). In the first stage, the protein structures are represented
by their SSEs. We assume that a structural alignment is biologically interesting only if its
core consists of at least two SSEs. This assumption is based on the definition of a structural
motif (Lehninger et al., 1993). According to this assumption, pairs of SSEs which are
conserved in at least two proteins are detected and initial local alignments are obtained. In
the second stage, we use the Cα atomic coordinates of the protein structures to refine and
extend the initial alignments, in order to obtain global atomic superpositions.

• Input. The input for the method is a collection of m proteins: P1, P2, ..., Pm. For each
protein two inputs are given: (i) the 3D coordinates of its atoms in PDB format (Berman
et al., 2000); and (ii) the assignment of SSE types to its residues. In the current implemen-
tation of MASS, three types of SSE assignment are supported: PDB (Berman et al., 2000),
DSSP (Kabsch & Sander, 1983) and DSSPcont (?).

• Representing Secondary Structure Elements. The SSEs that we base our align-
ments on are helices and strands, where all types of helices (e.g. α, π, 3 − 10) are grouped
together in one category.

We represent each SSE by its axis (see Figure 2). The axis of an SSE is a directed 3D
line segment, defined as follows: (i) it is located on the least squares line of all the α-carbon
atoms of the SSE, i.e. the line that minimizes the sum of squares of the perpendicular
distances from the α-carbon atoms to the line; (ii) its length is the distance between the two
projection points of the terminal α-carbon atoms of the SSE; and (iii) its direction is along
the polypeptide chain.

• Detecting Multiple Base Alignments. A basis is defined as an ordered pair of SSEs.
Based on the assumption that the core of an interesting alignment consists of at least two
SSEs, our purpose in this stage is to find almost-congruent bases that appear in several
proteins (in at least two by default). To find such bases in an efficient manner, we employ
the Geometric Hashing paradigm (Nussinov & Wolfson, 1991). Specifically, we represent
each basis by a 5D vector, termed fingerprint. The fingerprint is invariant to a 3D rotation
and translation and composed of the following five components (see Figure 3a): (i) the type
of the first SSE; (ii) the type of the second SSE; (iii) the angle between their axial vectors;
(iv) the midpoint-to-midpoint distance between their axes; and (v) their line distance, i.e.
the closest distance in space between their (infinite) least-squares lines.

6



We store the bases of all proteins in a 5D grid addressed by their fingerprint. Congruent
bases have the same fingerprint and thus are stored in the same grid bin. Almost-congruent
bases have similar fingerprints and thus reside close to each other in the grid, but not
necessarily in the same bin. The resolution of the grid is determined by the tolerance that
we allow between the fingerprints of bases we consider as almost congruent. By default two
bases are considered to be almost-congruent if: (i) the types of their SSEs are the same; (ii)
the difference between their midpoint-to-midpoint and line distances is up to 1.5 Å; and (iii)
the difference between their angles is up to 0.3 radians. These values have been determined
empirically.

We then iterate over the grid bins. For each bin, we extract all the bases of the bin
and of adjacent bins and group them together in the same Base Bucket (see Figure 3b). A
base bucket is simply a container that stores bases in columns according to the protein they
belong to. Bases derived from the same protein are stored in the same column.

Almost-congruent bases are stored in the same base bucket. A collection of almost-
congruent bases, each belonging to a different column (i.e. protein) of a base bucket, induces
a local multiple alignment between the respective proteins, whose core consists of at least two
SSEs. Specifically, one basis is selected as a pivot and the rest of the bases are superimposed
on it. The obtained vector of pairwise alignments defines a local multiple alignment between
the respective proteins and is termed multiple base alignment. The core of this alignment
consists of at least two SSEs, but can be extended into a larger substructure. Note that the
selection of the pivot may influence the alignment. Thus, so as not to be influenced, there
is an option in MASS to iteratively choose each basis to be a pivot.

A multiple alignment is defined by an underlying set of pairwise alignments. Thus, as
a first step in evaluating the possible multiple base alignments, we compute their pairwise
alignment components. Specifically, for each base bucket we compute all the alignments
between two bases, taken from two different columns.

Two ways for aligning a pair of bases are supported. In the first approach we represent
each SSE by the list of its Cα atoms. Then, we find the transformation between the two bases
that aligns the maximal number of atoms with the minimal RMSD. In the second approach
we uniquely define a cartesian reference frame for each basis. Then, we superimpose the two
reference frames one onto another. This approach is less accurate than the former. However,
it is useful in cases in which the atomic coordinates of the proteins are not known and the
only available data are about their secondary structure, for instance information extracted
from models or EM density maps (Chiu et al., 2002).

• Clustering. Assume we have a pair of proteins whose largest common substructure
consists of more than two SSEs. For such a pair, we may get several local base alignments
(one alignment for each basis in their common substructure). These alignments have almost
the same transformation, but a different local SSE core. Our aim at this stage is to cluster
all the local base alignments in order to find the ones with similar transformations and merge
them into a new global alignment. The match list of the new global alignment is the union
of the original local match lists and its transformation is the one that aligns the SSEs of
the new match list with minimum RMSD (computed by the Least-Squares Fitting method
(Kabsch, 1978)).
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• Global Extension. After the clustering, the core of each pairwise alignment is a set
of SSEs. In this stage, we extend the cores of these alignments by detecting corresponding
Cα-atoms, which do not necessarily belong to SSEs. Each pairwise alignment is associated
with a transformation. This transformation takes two sets of SSEs, one from each protein,
and superimposes the second set onto the first set (i.e. the one from the pivot protein). We
apply this transformation on the second protein, so that it is fully superimposed onto the
pivot protein. We then detect in linear time pairs of Cα atoms, one atom from each protein,
whose positions are close enough (Bachar et al., 1993). These atom pairs are added to the
alignment’s match list. The transformation of the alignment is then refined by employing
the Least-Squares Fitting method (Kabsch, 1978).

• Computing the Best Global Multiple Alignments. What are the best global multi-
ple alignments? There is no absolute answer to this question. As was mentioned above, there
are several trade-offs, e.g.: (i) number of aligned molecules vs. core size; and (ii) core size
vs. the size of the smallest participating molecule. The trade-offs are derived from the fact
that we compare subset alignments with different participating molecules. Two approaches
for addressing the first trade-off have been implemented: (i) The score of an alignment is
defined as a function of the number of participating molecules (k) and the core size (l):
F (k, l) = l ·

(
k
2

)
; (ii) Providing the alignments with the largest cores for each possible number

of aligned molecules. The second trade-off is addressed by using a relative scoring function,
which rewards alignments with a high ratio between the core size and the size of the smallest
participating molecule. The choice of the scoring function depends on the input and thus is
a user-defined parameter.

As was discussed before, the number of possible multiple alignments defined by the base
buckets is exponential in the number of input molecules. Our aim at this stage is not to
compute all of them, but to suggest a heuristic solution for choosing and computing only
the best ones. For each base bucket we compute the set of best multiple alignments over
its columns. We select each basis as a pivot and choose at most one basis from each of the
remaining columns in an iterative manner. The chosen bases are the ones that yield the
best global alignment. The core of the resulting multiple alignment is the intersection of the
cores of the underlying pairwise alignments. Since we construct only one multiple alignment
for each basis, the number of alignments is polynomial in the number of bases.

1.3 Complexity

The overall runtime complexity of the algorithm is bounded by O(m2s4(s4 log s+n)), where
m is the number of input proteins and s and n are the maximum number of SSEs and residues
found in each protein respectively2 (Dror et al., 2003). This is the worst case complexity,
when all the bases of all proteins are stored in one base bucket. The actual number of bases of
a bucket is influenced by two factors: (i) the number of recurring motifs in each protein; and
(ii) the structural variance among the input proteins. The former influences the number of
bases of a protein that will reside in the same base bucket. The latter influences the number
of occupied bucket’s columns. Since not all the bases of a protein are almost-congruent,

2Note that in a typical globular protein s ∼ 15 and n ∼ 300
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there will be fewer bases in each bucket’s column. Furthermore, when the input proteins are
less structurally similar, fewer bases of them will be in the same base buckets, so there will
be less than m occupied columns. To estimate the ’practical’ runtime complexity, we have
conducted a set of experiments. The behavior of the complexity in these tests was quadratic
in both the number of molecules (m) and SSEs (s). This is much lower than the theoretical
complexity.

2 Results and Discussion

We have conducted numerous experiments with the MASS program. Here we describe some
of these, demonstrating the capability of MASS to address challenging cases of multiple
structural alignment. These cases include: (i) detection of subset alignments and their use for
structural classification; (ii) detection of non-topological alignments; (iii) detection of more
than one common substructure for a given set of molecules; and (iv) alignments of large-scale
ensembles. Finally, we demonstrate how by utilizing structural conservation information, we
are able to improve protein-protein docking. Additional examples for multiple alignments
obtained by MASS can be found in (Dror et al., 2003).

All experiments were performed on a standard PC workstation (Pentium c© 4 1800 MHz
processor with 1GB internal memory). Secondary structure assignment in all experiments
was determined by the DSSP program (Kabsch & Sander, 1983). The PDB codes of the
discussed ensembles are listed in Table 4.

2.1 Detection of Subset Alignments for Structural Classification

Here we show that MASS is capable of detecting not only structural motifs common to the
whole given set of molecules, but also motifs shared only by a subset of molecules. We
further show that such a capability may be very useful for structural classification.

• CL-GL Ensemble. We have used MASS to align a set of twelve sequentially non-
redundant structures taken from the ’Actin depolymerizing proteins’ fold of the SCOP
database (Murzin et al., 1995). This fold contains only two families: the Cofilin-like (CL)
and the Gelsolin-like (GL) families. The two families share a central five-stranded β-sheet
of the form BACDE that is flanked between two α-helices: one long helix between strands
D and E (α1) and one short helix in the C terminus (α2). The CL family has two additional
α-helices: an N terminal helix and a short helix between strands B and C. The two families
are related structurally but not sequentially (Hatanaka et al., 1996; Benyamini et al., 2003).
The twelve-molecule ensemble contains four CL structures (PDB: 1f7s, 1ak6 ,1cfyB and
1cnu) and eight GL (PDB: 1d0nA:27-152, 1d0nA:153-262, 1d0nA:263-383, 1d0nA:384-532,
1d0nA:533-628, 1d0nA:629-755, 1svy and 2vik).

The running time of MASS on this ensemble was 36 seconds. Figure 4a presents the
structural alignment of all twelve proteins. The common core consists of 28 residues with an
RMSD of 1.9 Å. Strands A,C,D,E and helix α1 are structurally conserved. Strand B is only
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partially conserved due to a slight twist. Helix α2 is not conserved, because its coordinates
are missing in arabidopsis thaliana cofilin protein (PDB: 1f7s).

MASS also detected meaningful subset alignments. The graph in Figure 5 presents the
maximal core size for every number of aligned molecules. As expected, the maximal core
size decreases as the number of aligned molecules increases. However, the dependence is
not linear: a significant decrease in the maximal core size is observed in the following three
cases: (i) a decrease of 17 residues between three to four molecules; (ii) a decrease of 32
residues between four to five molecules; and (iii) a decrease of 15 residues between eight to
nine molecules. The decrease in these cases indicates that the best subset alignments among
eight, four and three molecules may be the most interesting ones. Indeed, the best alignment
among eight molecules consists solely of the GL family members. Their common core consists
of 63 residues with an RMSD of 1.5 Å. It contains all the fold’s SSEs, including strand B
and helix α2 (see Figure 4b). In addition, the best alignment among four molecules consists
solely of the CL family members. Their core consists of 104 residues with an RMSD of 1.2
Å. It contains the fold’s SSEs, except for helix α2 (which is missing in protein PDB:1f7s), the
two additional CL helices and a small β-strand (see Figure 4c). For three molecules, there
are two good alignments. The first alignment is between three out of the four CL structures.
The outlier protein is PDB:1f7s, which lacks the C-terminal α-helix (α2). The core of this
alignment consists of 120 residues with an RMSD of 1.3 Å. It is similar to the core of all
four CL structures, except that it contains also helix α2 (see Figure 4d). The second good
alignment of three molecules is between the three X-ray solved CL structures (PDB: 1f7s,
1cfyB and 1cnu) where the outlier is an NMR structure (PDB: 1ak6). Additionally, the three
structurally similar proteins are classified as cofilin domains, while PDB:1ak6 is classified as
destrin based on sequence similarity. The core of this alignment consists of 114 residues with
an RMSD of 0.9 Å. It is similar to the core of all four CL structures.

This example demonstrates an application of MASS for the exploration of protein en-
sembles that are structurally homologous at different levels (e.g. family or fold). Multiple
structural alignments of such ensembles are capable of addressing questions regarding the
structural profile of a family and of a fold, and the structural characteristics that distinguish
between different families within the same fold.

• DNA-Binding Ensemble. We find this ensemble interesting since the common de-
nominator of the participating molecules is function and not fold (in contrast to the CL-GL
ensemble). In such a case, one knows in advance that the ensemble may be structurally di-
verse, that is, it may contain different protein folds and thus poses a classification challenge.

The ensemble consists of 18 DNA-binding proteins, which can be classified into five
structural groups (see Table 1). The proteins in each group belong to different domains of
the same SCOP family or to different families of the same superfamily. The running time of
MASS on this ensemble was 15 seconds. All five groups were detected as subset alignments
(see Table 2 and Figure 6). The alignment of the classic zinc finger family captures a β-
hairpin and an α-helix, together with the zinc atoms of the DNA-protein complexes. The
alignment of the nucleosome core histones shows that they achieve a contact with DNA via
their assembly. Their conserved structural core consists of three α-helices. The alignment
of the phage repressor family shows the conservation of the helix-turn-helix DNA binding

10



site scaffold. The alignment of members from the ’restriction endonuclease like’ superfamily
has a core of a β-sheet and two α-helices. Here, the members are more remotely related
and thus the structural core does not contain the DNA binding site. Finally, the alignment
of the winged helix superfamily members has a structurally conserved core that contains a
central two-stranded β-sheet and three α-helices. In this case the binding site is included in
the alignment. Note that PDB:1fokA has two different domains that are differently classified
in the SCOP database into the ’Restriction endonuclease-like’ and the ’Winged helix DNA-
binding domain’ superfamilies. MASS detected the structural similarity within both input
subsets.

The automatic detection, without any a priori knowledge of subset alignments of the
different DNA binding molecules suggests that MASS is a powerful tool for structural clas-
sification of protein ensembles.

2.2 Detection of Non-Topological Motifs

The following example shows that MASS is capable of finding non-topological structural
alignments, i.e. alignments in which the spatial configuration of the corresponding SSEs is
conserved while their order and direction along the polypeptide chains are not conserved.
Such alignments demonstrate that even when the sequences and topologies of proteins are
totally different, their 3D structures may be surprisingly similar. In addition, such alignments
may aid in elucidating the role of secondary structure packing preferences in protein folding.
Here we give only one example for non-topological alignment. Other examples, obtained by
MASS, can be found in (Dror et al., 2003).

• TRAF-Immunoglobulin Ensemble. The eight proteins of this ensemble belong to
two different folds of the all-β class in the SCOP database (Murzin et al., 1995): (i) Four of
these (PDB: 1czyA, 1kzzA, 1lb4 and 1k2fA) belong to the ’TRAF (TNF Receptor Associated
Factor) domain-like’ fold. There is only one superfamily in this fold and it consists of two
families, ’TRAF domain’ and SIAH (‘Seven In Absentia Homolog’). Proteins PDB:1czyA,
1kzzA and 1lb4 were taken from the three domains of the TRAF family, where PDB:1k2fA
was taken from the only domain of the SIAH family; (ii) The other proteins (PDB: 1bmg,
1frtB, 1igtA and 1k8iA) belong to four different domains of the ’C1 set domains’ family of
the ’Immunoglobulin-like beta-sandwich’ fold.

The running time of MASS on this ensemble was 21 seconds. Figure 7a presents their
structural alignment. The core of the alignment consists of 31 residues with an RMSD of
1.6Å. It forms a sandwich of 6 β-strands. Figures 7b and 7c show that the alignment is
non-sequential and that the structurally conserved core appears in the various proteins via
different topologies.

MASS also detected subset alignments. As expected, the highest scoring ones between
four proteins are: (i) an alignment between all proteins of the ’TRAF domain-like’ fold. The
common core consists of 82 residues with an RMSD of 1.5Å. It forms a sandwich of eight
β-strands (see Figure 8a); (ii) an alignment between all proteins of the ’Immunoglobulin-like
beta-sandwich’ fold. The core consists of 76 residues with an RMSD of 1.1Å, and it forms
a sandwich of seven β-strands (see Figure 8b). Interestingly, these two subset alignments
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are sequential, although in the alignment between all the eight proteins, the four members
of each fold are aligned in a non-sequential manner. Specifically, proteins PDB:1k2fA and
PDB:1k8iA are non-sequentially aligned with respect to the other three members of their
fold (see Figure 7b). This demonstrates that an alignment, which is optimal for the whole
set, is not always optimal for every subset.

The example demonstrates the ability of MASS to detect structural similarity among pro-
teins that belong to different folds. Such structural similarity can not be detected by sequence
alignment methods and not even by structural alignment methods, which are sequence-order
dependent (e.g. methods that are based on dynamic programming).

2.3 Detection of Several Different Common Substructures

This section shows the ability of MASS to detect more than one common substructure
(domain or motif) for a given set of molecules.

• Detection of Two Common Domains. We have used MASS to align five protein
structures that have two common domains: ’p53-like transcription factors’ and ’E set do-
mains’ (PDB codes: 1a02N, 1iknA, 1nfiA, 1imhA and 1a3qA). The running time was 19
seconds. MASS detected two different common substructures, one for each domain. The
first common substructure is part of the ’p53-like transcription factors’ domain. It consists
of 114 residues with an RMSD of 1.4 Å and it forms a sandwich of nine β-strands (see Figure
9a). The second common substructure is part of the ’E set domains’ domain. It consists
of 87 residues with an RMSD of 1.2 Å and it forms a sandwich of seven β-strands (see
Figure 9b). The two common substructures may indicate a possible hinge motion between
the two domains, i.e. there is no 3D rigid transformation that simultaneously aligns the two
domains. In future work we intend to extend MASS to handle hinge motions.

• Detection of Two Common Motifs. When we applied MASS to the DNA-Binding
ensemble (see section 2.1), we obtained two good subset alignments for the three winged-helix
proteins (PDB: 1fokA, 1ddnA and 1cgpA). The first alignment is the one that is described
in section 2.1. Its core consists of a bundle of three helices and a small β-sheet (46 residues
with an RMSD of 1.7 Å). Although the core of the second alignment also forms a motif of a
3-helix bundle and a small β-sheet (45 residues with an RMSD of 1.6 Å), the two alignments
are different. Figures 10a and 10b show the two alignments respectively. As one can see,
the transformation that superimposes PDB:1ddnA onto PDB:1cgpA (the pivot structure) is
similar in the two alignments, but the transformation that superimposes PDB:1fokA onto
PDB:1cgpA is completely different. This indicates that the winged-helix motif appears twice
in PDB:1fokA. Figure 10c shows that two detected motifs of PDB:1fokA are involved in DNA
binding.

The above examples demonstrate that the largest common substructure is not the only
biologically interesting solution and emphasize the need to examine a list of high-scoring
solutions, rather than only the highest one.
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2.4 Large-Scale Structural Alignments

Here we demonstrate MASS’s capability of aligning tens of protein structures in practical
running times on a standard PC. For this purpose, we have applied MASS to the following
four SCOP ensembles (Murzin et al., 1995): (i) TIM-barrels - all of the 62 structures, which
belong to the Xylose isomerase family of the TIM beta/alpha-barrel fold (the family consists
of only one domain); (ii) Microbial ribonucleases - all 63 structures belonging to the RNase
T1 domain of the Microbial ribonucleases family; (iii) Subtilisin - all 60 structures belonging
to the Subtilisin domain of the Subtilases family; and (iv) unrelated proteins - a compiled
set of 60 unrelated protein structures. Each structure was taken from a different fold of the
four major SCOP classes: all-α, all-β, α+β and α\β.

Table 3 summarizes the performance of MASS on the four ensembles as a function of:
(i) the number of molecules; (ii) the average molecular size; (iii) the average number of
SSEs in a molecule; and (iv) the structural similarity among the molecules. All four pa-
rameters increase the running time as they grow. Both our complexity analysis and results
demonstrate such a behavior. For instance, although the Microbial ribonucleases and the
Tim-barrel ensembles consist of almost the same number of proteins taken from the same
SCOP domain (63 and 62 respectively), the running time of MASS on the Microbial ribonu-
cleases ensemble (28 sec) is much shorter than on the Tim-barrel ensemble (47min:59sec).
This difference in the running times is mainly due to the difference in the average molecular
size and the average number of SSEs (103 and 3 vs. 391 and 14 respectively). Another factor
that has influenced the running time is the difference in the number of self recurring motifs.
The TIM-barrel proteins have more self recurring motifs due to their symmetric structures.
As a result, more bases were stored in a bucket’s column and the runtime was increased.
Comparing the performance of MASS on the Subtilisin ensemble and on the compiled set
of unrelated proteins shows how structural variance among the input proteins influences the
running time: The more structurally variable is the ensemble, the shorter the running time
is. Both ensembles consist of 60 molecules, their average number of SSEs is 14 and their
average molecule size is almost the same (273 and 297), even though the running time of
MASS on the compiled set of unrelated proteins (9min:42sec) is shorter than on the Subtil-
isin ensemble (23min:10sec). We attribute this difference in the running times mainly to the
difference in the structural variance within each ensemble: The Subtilisin ensemble consists
of structurally homogeneous proteins (i.e. proteins from the same SCOP domain) where
the other ensemble consists of structurally unrelated proteins (i.e. each protein belongs to a
different SCOP fold).

3 Application of MASS for Docking Improvements

The problem of predicting the correct binding mode of protein-protein interaction is ex-
tremely difficult. A major problem is that of ’false positives’. In the state-of-the-art docking
algorithms often a correct solution (within 5Å RMSD from the native complex) is detected
among the best few hundreds, alas it is ranked too low to be analyzed by a subsequent
visual inspection (Halperin et al., 2002). This problem is especially acute for large pro-
tein molecules, where there are alternative binding interfaces with better complementarity.
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Therefore, an a priori knowledge of the binding site is likely to critically aid in detecting the
correct docking. Sometimes the binding site is known in advance due to direct biochemical
data. In the absence of such knowledge, one may need to utilize alternative means. Here we
show how an efficient multiple structure comparison routine, such as MASS, can be helpful
in guiding protein-protein docking.

The serine proteinases have been a standard benchmark for evaluating multiple structural
alignment methods (Yang & Honig, 2000b; Russell & Barton, 1992; Sali & Blundell, 1990).
In particular, the ten serine proteinases listed in Table 4 are known to be difficult to align
using sequence information alone (Russell & Barton, 1992). Figure 11a shows the structural
alignment of all ten proteins as obtained by MASS (runtime 39 seconds). A structural core of
123 residues is detected with an RMSD of 1.5Å. It contains the two six-stranded antiparallel
β-barrels that form the fold and the three residues of the catalytic triad (HIS-57, ASP-102,
SER-195). MASS further detected three conserved loops: residues 55-59 (contains a small
3−10 helix), 128-130 and 189-197. Two of these contain residues that belong to the catalytic
triad (His-57, Ser-195).

Secondary structures serve as the scaffold of proteins and thus are usually conserved for
stability purposes. In contrast, conservation of connecting loops may indicate a potential
functional site. A docking of kallikrein A (PDB:2pkaAB) and a bovine pancreatic trypsin
inhibitor (PDB:6pti) was performed using PatchDock (Duhovny et al., 2002). We applied
the docking procedure twice: (i) without any assumption on the binding site; (ii) a guided
docking, defining the structurally conserved loops detected by MASS as the region that
contains the binding site. Strikingly, the rank of the correct docking solution was improved
from 49 to 1 (see Figure 11b).

4 Conclusions

Here we have described a novel method, named MASS, for aligning multiple protein struc-
tures and detecting their common structural motifs. MASS simultaneously compares the
input proteins, both at the secondary structure and the Cα atomic levels. The usage of
SSEs at the first stage aids in filtering out noisy solutions and in making the method highly
efficient and robust.

The results have demonstrated the performance of MASS on some challenging cases
of multiple structural alignment. We have shown that: (i) MASS is capable of aligning
tens of protein structures in practical running time; (ii) As MASS disregards the sequence
order of SSEs, it is able to detect non-topological structural motifs; and (iii) MASS can
successfully detect biologically meaningful substructures common to non-predefined subsets
of the input ensemble. It automatically classifies the given ensemble to its constituent
structural and functional subsets. For example, it distinguished between different families
of DNA binding proteins. We have further shown a new application of multiple structure
alignment: exploiting the detected structurally conserved motifs for considerably improving
the results of a docking procedure.

These features of MASS suggest that it is a useful tool for homology modeling, protein
classification and structure-function studies. We further suggest the SSE-only mode of MASS
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as a potential future application. Compared to the full (SSE and atomic) mode, the SSE-only
mode is far more efficient with lower running times. It may be useful for two types of cases:
(i) Large scale ensembles. Currently, MASS exhibits practical running times on ensembles on
the order of tens of proteins. Using SSE-only mode is likely to enable the running of MASS
on larger ensembles. (ii) Ensembles that contain proteins for which only SSE information
exists. Examples include theoretical models obtained by structure prediction methods, or
suggested SSE arrangements inferred from cryo-electron microscopy (Chiu et al., 2002).
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Tables

Table 1: DNA-Binding Ensemble. Classification of the DNA-binding proteins into five
different structural subgroups according to the SCOP database (Murzin et al., 1995).
SCOP Classification PDB Codes

Classic zinc finger (C2H2) family 1a1i, 1bhi, 1rmd, 1tf3, 1ubd, 1yuj, 5znf
Nucleosome core histones family 1hq3C, 1hq3D, 1eqzB
Phage repressors family 1perL, 2cro, 1adr
Restriction endonuclease-like superfamily 1cw0A, 1fokA, 3bamA
Winged helix DNA-binding domain superfamily 1fokA, 1ddnA, 1cgpA
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Table 2: DNA-Binding Ensemble. The structural core detected by MASS for each of the
five different structural subgroups listed in Table 1.
SCOP Classification Core

Size
RMSD Core Description

Classic zinc finger (C2H2) family 20 1.2 β-hairpin followed by an α-helix
Nucleosome core histones family 65 1.4 a bundle of 3 helices
Phage repressors family 60 0.9 5 helices
Restriction endonuclease-like superfamily 55 1.9 β-sheet of 5 strands and 2 helices
Winged helix DNA-binding domain super-
family

46 1.7 a bundle of 3 helices and a small
β-sheet (wing)

20



Table 3: Run times of MASS on large-scale protein ensembles. The performance
of MASS as a function of: (i) the number of molecules; (ii) the average molecular size; (iii)
the average number of SSEs in a molecule; and (iv) the structural similarity among the
molecules. All four parameters increase the running time as they grow.
Ensemble Name No. of

Mol.
Avg. Mol.
Size

Avg. No.
of SSEs

SCOP classifica-
tion

Run Time
(h:mm:ss)

TIM-barrels 62 391 14 same domain 00:47:59
Microbial ribonucleases 63 103 3 same domain 00:00:28
Subtilisin 60 273 14 same domain 00:23:10
unrelated proteins 60 297 14 unrelated 00:09:42
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Table 4: Data Set. The first four letters of a protein name are the PDB code, followed by
chain id and the residue numbers for the first and the last residue.

Ensemble Name PDB Codes

CL-GL 1f7s, 1ak6 ,1cfyB, 1cnu, 1d0nA:27-152, 1d0nA:153-262,
1d0nA:263-383, 1d0nA:384-532, 1d0nA:533-628, 1d0nA:629-
755, 1svy, 2vik

DNA-Binding 1a1i, 1bhi, 1rmd, 1tf3, 1ubd, 1yuj, 5znf, 1hq3C, 1hq3D,
1eqzB, 1perL, 2cro, 1adr, 1cw0A, 1fokA, 3bamA, 1ddnA,
1cgpA

TRAF-Immunoglobulin 1czyA, 1kzzA, 1lb4, 1k2fA, 1bmg, 1frtB, 1igtA, 1k8iA
Two-Domains 1a02N, 1iknA, 1nfiA, 1imhA, 1a3qA
Serine Proteinases 1sgt, 1ton, 2alp, 2pkaAB, 2sga, 3est, 3rp2A, 3sgbE, 4chaA,

2ptn
TIM-barrels 6xia, 1dxiA, 2gyiA, 1xyaA, 1xylA, 1xymA, 1xybA, 1xycA,

4xis, 1xis, 1gw9A, 3xis, 1xib, 1xic, 1xif, 2xis, 1xii, 1xij, 1xih,
1xid, 1xig, 1xie, 9xia, 8xia, 1qt1A, 1clkA, 4xiaA, 1xlmA,
1dieA, 1xlaA, 1xlcA, 1xldA, 1xlfA, 1xlhA, 1xliA, 5xiaA,
1didA, 1xlgA, 1xljA, 1xlbA, 1xllA, 1xlkA, 1xleA, 1ximA,
3ximA, 5xinA, 4ximA, 3xinA, 2xinA, 2ximA, 7ximA, 9ximA,
8ximA, 1xinA, 6ximA, 5ximA, 1bhwA, 1a0cA, 1a0dA, 1a0eA,
1bxcA, 1bxbA

Microbial ribonucleases 1i0vA, 9rnt, 1loyA, 1lovA, 1rga, 4gsp, 1i0xA, 8rnt, 2rnt,
3rnt, 1i3iA, 4bir, 1rgk, 2aae, 5bu4A, 1hyfA, 2gsp, 6rnt,
1fzuA, 1rn4, 5gsp, 1i2gA, 3gsp, 1i2eA, 2hohA, 4bu4A, 1g02A,
3bu4A, 3hohA, 1birA, 1bviA, 1rhlA, 1det, 1bu4, 1i2fA,
5hohA, 1rls, 1rgl, 7gspA, 1fysA, 5birA, 2aadA, 1lra, 1rgcA,
7rnt, 2bu4A, 1rnt, 1lowA, 1gsp, 1b2mA, 4hohA, 1rn1A, 6gsp,
4rnt, 1trqA, 1i3fA, 1ch0A, 3bir, 2birA, 1trpA, 5rnt, 1ygw,
1hz1A

Subtilisin 1cseE, 2secE, 1selA, 1sbc, 1scjA, 1bh6A, 1avt, 1sca, 1scnE,
1vsb, 1c3lA, 1scd, 1be8, 1be6, 1bfu, 1bfk, 3vsb, 1av7, 1af4,
1scb, 1svn, 1gci, 1st3, 1jea, 1c9nA, 1c9mA, 1c9jA, 1lw6E,
1sup, 1a2q, 1s01, 1aqn, 1sub, 2st1, 1au9, 1ak9, 1yjb, 1sbh,
1sue, 1suc, 2sicE, 1s02, 1gnvA, 3sicE, 1yjc, 1sud, 1yja, 1gnsA,
1st2, 2sniE, 1duiA, 1spbS, 1suaA, 1sbi, 1sbnE, 1ubnA, 5sicE,
1sibE, 1sbt, 2sbt

Continued on next page
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Table 4 – continued from previous page
Ensemble Name PDB Codes

unrelated proteins 1ah7, 1aorA:211-605, 1bkdS, 1bqv, 1csh, 1dnpA:201-
469, 1dz4A, 1ewqA:267-541, 1f0jA, 1f5nA:284-583, 1g9lA,
1hbnA:270-549, 1i7wA, 1jswA, 1lla110-379, 1air, 1aol, 1arb,
1at0, 1gof151-537, 1hcb, 1ijaA, 1k8hA, 1knb, 1l7kA, 1lxa,
1nls, 1ospO, 1p35A, 1qexA, 1ad3A, 1cjyA:142-721, 1cm5A,
1dhs, 1ds9A, 1eu1A:4-625, 1fehA:210-574, 1gr8A, 1jetA,
1jixA, 1k30A, 1qpg, 1tml, 1ttqB, 1xaa, 1ag2, 1c8zA, 1cby,
1cfe, 1cnsA, 1d8iA, 1dy5A, 1ji8A, 1kyfA:825-938, 1kypA,
1mut, 1nox, 1qndA, 1qqqA, 1sryA:111-421
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Figure Legends

Figure 1: The flow of the MASS algorithm. MASS is based on a two-level alignment,
using both secondary structure and atomic representation. In the first stage, the protein
structures are represented by their SSEs and initial local alignments are obtained based
on this coarse representation. In the second stage, we use the Cα atomic coordinates of
the protein structures to refine and extend the initial alignments in order to obtain global
atomic superpositions. However, note that when atomic information is not available, there is
an option in MASS to obtain alignments based only on secondary structures. In this mode,
the local base alignment, clustering and filtering steps are performed at the SSE level.

Figure 2: SSE representation. (a) Representing a helix as a 3D directed line segment.
(b) The line segment that represents an SSE is defined as follows: (i) its line is the least
square line of all the Cα atoms of the SSE, i.e. the line that minimizes

∑
Cα∈SSE d2

i ; (ii) its
length is determined by the projection of the two terminal Cα atoms of the SSE; and (iii)
its direction is from the N-terminus to the C-terminus.

Figure 3: Base fingerprint and Base Bucket. (a) The fingerprint of a base is defined
as a 5D vector composed of the types of the two SSEs, the angle (α) between their axial
vectors, the midpoint-to-midpoint distance between their axes and their line distance. (b)
A base bucket stores almost-congruent bases. The bases are stored in columns according to
the protein they belong to. The paths shown in red, green and magenta are examples for
possible multiple base alignments.

Figure 4: CL-GL ensemble. The figure shows four different subset alignments. The
backbone of the proteins is displayed in RasMol strands representation (Sayle & Milner-
White, 1995) and is colored gray. The structurally conserved core detected by MASS is
colored by secondary structure (helices are colored magenta, strands are colored yellow,
turns are colored blue, and all other residues are colored light gray). (a) The structural
alignment of all twelve proteins of the ensemble. (b) A subset alignment between only the
eight GL proteins. (c) A subset alignment between only the four CL structures. (d) A
subset alignment between only three out of the four CL structures. The outlier is PDB:1f7s,
which lacks the C-terminal α-helix.

Figure 5: CL-GL ensemble. The graph presents the maximal core size for every number
of aligned molecules, taken from the CL-GL ensemble.

Figure 6: DNA-Binding ensemble. Subset alignments that captured the five structural
subgroups of the ensemble: classic zinc finger, nucleosome core histones, phage repressors,
restriction endonuclease and winged helix (see Table 1). The backbone of the proteins
is displayed in RasMol strands representation (Sayle & Milner-White, 1995) and colored
in gray. The conserved regions of the proteins are colored by secondary structure. The
DNA is shown in spacefill representation and colored in light yellow. (a) The alignment of
all seven structures of the ’Classic zinc finger (C2H2)’ family. Four of the structures are
DNA-complexes. Only the DNA from PDB:1yuj is shown. The Zinc atoms of all four DNA-
complexes are displayed by assigning a different color to each complex. As one can see, the
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four Zinc atoms are strictly superimposed. (b) The alignment of all three structures of the
’Nucleosome core histones’ family. The DNA is from PDB:1eqzB. (c) The alignment of all
three structures of the ’Phage repressors’ family. The displayed DNA is of PDB:1perL. (d)
The alignment of all three structures of the ’Restriction endonuclease-like’ superfamily. The
displayed DNA is from PDB:1fokA. (e) The alignment of all three structures of the ’Winged
helix DNA-binding domain’ superfamily. The displayed DNA is from PDB:1cgpA.

Figure 7: TRAF-Immunoglobulin ensemble. (a) The structural alignment of all eight
proteins of the ensemble. The backbone of the proteins is displayed in RasMol strands
representation (Sayle & Milner-White, 1995) and is colored in gray. Their common core is
displayed by assigning a different color to each of the six conserved β-strand. (b) The match
between the conserved β-strands (E stands for a β-strand and it is followed by the strand
number along the polypeptide chain). Note that a strand was not assigned to residues 3-7
of protein PDB:1igtA by the DSSP program (Kabsch & Sander, 1983). But, according to
the PDB assignment, residues 4-7 form a strand. (c) The TOPS diagrams of the proteins
(Flores et al., 1994). Triangles represent strands and circles helices as assigned by the DSSP
program (Kabsch & Sander, 1983). Corresponding strands are drawn in the same color. As
one can see the alignment is non-topological and its core is a β-sandwich.

Figure 8: TRAF-Immunoglobulin ensemble. The figure shows that MASS has managed
to distinguish between the ’TRAF domain-like’ and the ’Immunoglobulin-like beta-sandwich’
proteins. The backbone of the proteins is displayed in RasMol strands representation (Sayle
& Milner-White, 1995) and colored in gray. The conserved regions of the proteins are colored
by secondary structure (helices are colored magenta, strands are colored yellow, turns are
colored blue, and all other residues are colored light gray). (a) A subset alignment between
only the four proteins of the ’TRAF domain-like’ fold. (b) A subset alignment between only
the four proteins of the ’Immunoglobulin-like beta-sandwich’ fold.

Figure 9: Two-Domains ensemble. The figure shows the two different structural con-
served cores of the ensemble. The backbone of protein 1nfiA is shown in navy. The back-
bone of the other proteins is colored gray. The two structurally conserved cores detected by
MASS are colored by secondary structure. (a) The first detected conserved core (part of
the ’p53-like transcription factors’ domain). (b) The second detected conserved core (part
of the ’E set domains’ domain).

Figure 10: Winged Helix DNA-Binding Domain. The figure shows the two different
subset alignments that were obtained for the three winged helix DNA-binding proteins (PDB:
1cgpA, 1fokA, 1ddnA) when we applied MASS to the DNA-Binding ensemble. The backbone
of the proteins is colored gray. The cores of the alignments are colored by secondary structure.
The DNA of PDB:1cgpA, 1fokA and 1ddnA are colored in light yellow, light blue and light
pink respectively. (a) The first detected subset alignment (also shown in Figure 6e). The
DNAs of all the three complexes are well aligned. The core of the alignment is a winged-helix
motif (three helices and a small β-sheet). (b) The second detected subset alignment. Only
the DNAs of PDB:1cgpA and PDB:1ddnA are well aligned. The core of this alignment is
also a winged-helix motif. (c) The figure shows that the two detected winged-helix motifs
of PDB:1fokA are involved in DNA binding.
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Figure 11: Serine Proteases. (a) The structural alignment of ten serine proteinases.
PDB:2pkaAB is shown completely in light yellow. The core of the alignment is colored by
secondary structure and the three conserved loops are colored in green. The catalytic triad
is also conserved (the triad of PDB:2pkaAB is depicted as ball-and-sticks and colored dark
blue). Two of the conserved loops (55-59 and 189-197) are located in the active site. (b)
The unbound docking, as obtained by PatchDock (Duhovny et al., 2002), between a ’serine
protease kallikrein A’ (PDB:2pka) and its bovine pancreatic trypsin inhibitor (PDB:6pti).
The receptor PDB:2pka is depicted as in (a). The docked inhibitor, colored in red, is super-
imposed on the inhibitor of the crystal complex (PDB:2kaiI), colored blue.
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