Structural Bioinformatics 2004-05 Semester B Assignment 3.

Due to March 29

- 1. Given two equal size point sets $A = \{a_i\}_1^n$ and $B = \{b_i\}_1^n$ consider three similarity measures (in 3D):
 - (a) Bottleneck (L_{∞}) : there exists a permutation of B, B', and there exists a transformation T, such that: $\max |a_i - T(b'_i)| \leq \epsilon.$
 - (b) Hausdorff: $\exists T$, such that $H(A, T(B)) \leq \epsilon$, where H(A, B) = max(h(A, B), h(B, A)), $h(A, B) = \max_{a \in A} \min_{b \in B} ||a - b||$
 - (c) Distance difference: there exists a permutation of B, B', such that: $\forall (i,j) ||a_i - a_j| - |b'_i - b'_j|| \leq \epsilon.$

Show relations between these measures, i.e. whether measure (m) implies measure (m'), for the same pair (A, B) and the same ϵ .

- 2. A nonnegative function g(x,y) describing the "distance" between neighboring points for a given set is a metric if it satisfies the following properties:
 - (a) g(x, x) = 0.
 - (b) if g(x, y) = 0 then x = y.
 - (c) g(x, y) = g(y, x).
 - (d) Triangle inequality: $g(x, y) \le g(x, z) + g(z, y)$.

Show that the following distance measures are metrics (enough to show the triangle inequality):

 $A = \{a_i\}_1^n, B = \{b_i\}_1^n,$

(a)
$$RMSD(A, B) = \sqrt{\frac{\sum_{i=1}^{n} |a_i - b_i|^2}{n}}.$$

(b)
$$RMSD_{opt}(A, B) = \min_T \sqrt{\frac{\sum_{i=1}^n |a_i - T(b_i)|^2}{n}}$$

(hint: use the fact that $RMSD$ is a metric).

- 3. We want to devise a fast method to support the following operations.
 - (a) Create a matching set S and compute f(S). Given two sets of 3-D points $\{u_i\}_{1}^{n}$ and $\{v_i\}_{1}^{n}$ a matching set S is defined as a correspondence set $S = \{(u_i, v_i)\}_{1}^{n}$. A scoring f(S) is defined as:

$$f(S) = \min_{T} \sqrt{\frac{\sum_{i=1}^{n} |Tu_i - v_i|^2}{n}}$$
$$(Tu_i = Ru_i + a)$$

(this operation is exactly the same as explained in the class)

(b) Given two matching sets S_1 and S_2 create a joined matching set $S_3 = S_1 \cup S_2$ (assume that $S_1 \cap S_2 = \emptyset$) and compute $f(S_3)$.

Explain how to support the second operation so its time complexity is only O(1). After each operation you are allowed to store an additional information.

4. (*) Extend the algorithm, given in the class, to solve the optimal LCP for rotations in \mathbb{R}^3 . Give the time complexity.