
Recognition of Binding Patterns Common to a
Set of Protein Structures

Maxim Shatsky1?, Alexandra Shulman-Peleg1, Ruth Nussinov2,3 and Haim J.
Wolfson1

1 School of Computer Science, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2 Sackler Inst. of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 69978, Israel

3 Basic Research Program, SAIC-Frederick, Inc, Lab. of Experimental and
Computational Biology, Bldg. 469, Rm. 151, Frederick, MD 21702, USA

Abstract. We present a novel computational method, MultiBind, for
recognition of binding patterns common to a set of protein structures.
It is the first method which performs a multiple alignment between pro-
tein binding sites in the absence of overall sequence, fold or binding
partner similarity. MultiBind recognizes common spatial arrangements
of physico-chemical properties in the binding sites. These should be im-
portant for recognition of function, prediction of binding and drug de-
sign. We discuss the theoretical aspects of the computational problem
of multiple structure alignment. This problem involves solving a 3D k-
partite matching problem, which we show to be NP-Hard. The MultiBind
method, applies an efficient Geometric Hashing technique to detect a po-
tential set of multiple alignments of the given binding sites. To overcome
the exponential number of possible multiple combinations it applies a
very efficient filtering procedure which is heavily based on the selected
scoring function. Our method guarantees detection of an approximate
solution in terms of pattern proximity as well as cardinality of multi-
ple alignment. We show applications of MultiBind to several biological
targets. The method recognizes patterns which are responsible for bind-
ing small molecules such as estradiol, ATP/ANP and transition state
analogues. The presented computational results agree with the available
biological ones.
Availability: http://bioinfo3d.cs.tau.ac.il/MultiBind/.

Keywords: multiple structure alignment of binding sites; consensus binding patterns;

pattern matching; pattern discovery, recognition of functional sites; k-partite matching;

Introduction

Binding sites with similar physico-chemical and geometrical properties may per-
form similar functions and bind similar binding partners. Such binding sites may
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be created by evolutionarily unrelated proteins that share no overall sequence or
fold similarities. Their recognition has become especially acute with the growing
number of protein structures determined by the Structural Genomics project.
Multiple alignment of binding sites that are known to have similar binding part-
ners allows recognition of the physico-chemical and geometrical patterns that
are responsible for the binding. These patterns may help to understand and pre-
dict molecular recognition. Moreover, multiple alignment of binding sites allows
analysis of the dissimilarities of the binding sites which are important for the
specificity of drug leads.

Sequence patterns have been widely used for comparison and annotation of
protein binding sites [1]. Several methods search for patterns of residues that are
conserved in their 3D positions and in amino acid identities [2–4]. However, there
are numerous examples of functionally similar binding sites that are neither se-
quence order dependent nor share common patterns of amino acids [5–7]. Several
methods have been developed for protein multiple structural alignment [8–12].
To overcome the alignment complexity of large protein structures these methods
apply a variety of heuristics as well as some assumptions on properties of protein
backbone, e.g. sequentiality of some backbone fragments. However, similar bind-
ing site patterns may appear in proteins with different overall folds. In addition,
such patterns may be relatively small and can be easily missed when applying
heuristic approaches used for protein backbone alignment. Methods for recog-
nition of a pharmacophore common to a set small ligands [13, 14] share some
methodological aspects with problems of protein backbone or binding site align-
ment. However, most developed methods for common pharmacophore detection
are optimized for its specific problem definition, e.g. assume a tree-like ligand
topology. Consequently, the methods for protein backbone alignment or com-
mon ligand pharmacophore detection are generally not suitable for recognition
of common patterns of protein binding sites.

Several works have analyzed complexes of different proteins with the same
ligand. The superimposition between the binding sites has been obtained by
alignment of their common ligands [6,15]. This approach has several limitations.
First, it can analyze only protein structures with exactly the same partner lig-
ands. Second, the same ligand can bind in alternative modes even to the same
protein binding site [6]. Therefore, alignment according to ligands may fail to
recognize the pattern.

Computational methods have been developed for direct alignment of protein
binding sites. From the algorithmic standpoint, this involves solving a problem
of spatial labeled/unlabeled pattern detection. Most of the methods apply clique
detection algorithms. Some recent examples are the methods described by Ki-
noshita et al. [16], Schmitt et al. [17] and Shulman-Peleg et al. [7] However, all of
these methods perform a comparison of only two molecules. Pairwise alignments
may contain large number of features that are not necessarily required for the
binding. Multiple alignments of binding sites with the same function may help
to recognize the smallest set of features, a consensus, that is essential to achieve
the desired biological effect. In creation and screening of databases, such consen-



sus binding patterns may facilitate the development of efficient ranking schemes
and database architectures [7]. Although it is possible to combine the results of
various pairwise comparisons, high scoring pairwise solutions do not necessarily
lead to a high scoring solution for a set of molecules [18].

Below we review the progress made in Computational Geometry in study-
ing this problem. We start with a description for the case of two structures
and continue to multiple structures. Our emphasis is only on subjects related
to molecular structures. The problem of pattern detection answers the following
question. Given two point sets A and B, find a subset of A that is similar to
some subset of B. The optimization problem is to maximize the cardinality of
similar subsets. One common way to define the similarity between two point
sets is by the bottleneck metric [19,20]. Similar sub-sets are called ε-congruent if
the maximal distance between the matched points is less than ε. The optimiza-
tion problem, called the Largest Common Point Set (LCP) problem, involves
finding a transformation, e.g. Euclidean motion, that maximizes the size of two
ε-congruent sub-sets. For the bottleneck metric in 3D it can be solved in O(n32.5)
time [21], where n = max(|A|, |B|). Obviously, its time complexity is not prac-
tical even for small point sets. Therefore, more efficient methods are required.

Approximation techniques can significantly reduce time complexity at the
price of solution accuracy. A simple alignment technique [22] constructs a finite
set of transformations by aligning each triplet of points from the first struc-
ture with each ε-congruent triplet from the second one. For each transformation
we can apply the maximal bipartite matching algorithm to compute a bijective
mapping of points that are within ε distance from each other. Such alignment
technique guarantees finding LCP under 8ε-congruence of cardinality at least of
LCP under ε-congruence, if the latter exists. The time complexity is O(n8.5).
This technique was first developed for the Hausdorff distance [23] and later ap-
plied for the bottleneck distance [19]. Instead of approximating ε-congruence the
same technique can be applied to approximate the LCP size [24]. Interestingly,
an optimal algorithm for solving LCP for a group of transformations limited
to rotations only, can improve the approximation factor of the LCP problem
for general Euclidean transformations from 8ε to 2ε, while preserving the com-
plexity of O(n8.5) [24]. However, an implementation of such a technique is more
complicated and the constant factors of the time complexity become larger.

Extension of the problem to detect a common point set between a set of K
structures (from now on the term point set and structure will be used alterna-
tively) has many important applications for the analysis of protein and drug
molecules. However, even in one dimensional space for the case of exact congru-
ence (ε = 0) the problem is NP-Hard and it is hard to approximate within the
factor n1−δ, for any δ > 0, where n is the size of the smallest structure [18]. The
problem is further complicated by the fact that in practice it is impossible to
work with zero-congruence. Therefore, we face another combinatorial problem.
Namely, given a set of superimposed structures, compute the largest common
ε-congruent sub-set. We will call this problem K-partite-3D matching. While for
two structures (K = 2) it can be solved by bipartite matching, for K > 2 struc-



tures it can be solved by K-partite matching. However, this problem is known to
be NP-Hard even for k = 3 in general and hyper graphs [25, 26]. Here, we show
that the K-partite-3D matching problem is also NP-Hard.

In this paper we present an efficient, practical, method, MultiBind, for iden-
tification of common protein binding patterns by solving the multiple structure
alignment problem. The problem we aim to solve is NP-Hard, therefore our goal
is to find a trade-off between practical efficiency and theoretical bounds of so-
lution accuracy, while, most importantly, validating the biological correctness
of the results. We represent the protein binding site as a set of 3D points that
are assigned a set of physico-chemical and geometrical properties important for
protein-ligand interactions. The implementation of our method includes three
major computational steps. The first one is a generation of 3D transformations
that align the molecular structures. Here we apply the time efficient Geomet-
ric Hashing method [27]. The advantage of this method is that it enables to
avoid processing of points that can not be matched under any transformation.
In other words, its time complexity is proportional to the number of potentially
matched points included in the defined set of transformations. The second step is
a search for a combination of 3D transformations that gives the highest scoring
common 3D core. For this step we provide an algorithm that guarantees to find
the optimal solution by applying an efficient filtering procedure which practically
overcomes the exponential number of multiple combinations. The final step is a
computation of matching between points under multiple transformations, namely
K-partite-3D matching. Here, we give a fast approximate solution with factor K.
The overall scheme guarantees to approximate the ε-congruence as well as the
cardinality of multiple alignment. We apply MultiBind to some well studied bi-
ological examples such as estradiol, ATP/ANP and transition state analogues
binding sites. Our computational results agree with the available biological data.

The Largest Common Point Set Problem

We start from the definition of a pure geometric problem and in the next sec-
tion extend it to the biology related problem. Objects are represented by point
sets in 3D Euclidean space. Object S1 is ε − congruent to S2 if there exists an
Euclidean transformation T and a bijective mapping m : S2 → S1 such that for
each point s ∈ S2, d(m(s), T (s)) ≤ ε, where d(., .) is the Euclidean metric. Such
similarity measure is called the bottleneck matching measure. For simplicity, we
will also say that d(S1, T (S2)) ≤ ε if the two objects are of the same cardinality,
S1 = {pi}n

1 and S2 = {qi}n
1 , and d(pi, T (qi)) ≤ ε, i = 1, ..., n, that is the set S2

is preordered according to some bijective mapping.

Problem 1. Largest Common Point Set (LCP) between 2 Sets. Given ε > 0,
and two point sets S1 and S2, find a transformation T and equally sized subsets
S′

i ⊆ Si (i=1,2) of maximal cardinality such that d(S′
1, T (S′

2)) < ε.

Assuming that |S1|, |S2| ≤ n this problem can be exactly solved in O(n32.5)
time [21]. Now, we define an approximation version for this problem. Assume



that L is the size of the largest common point set of S1 and S2 with an error ε.
An (ε,β,γ)-approximation of the LCP problem, ε ≥ 0, β ≥ 1, γ ≥ 1, is to find a
common point set of size at least L/γ with an error of at most βε. Consider a
simple alignment method that works as follows. For each triplet of points from
S1 and for each triplet from S2 construct a 3D transformation that aligns the
second triplet with the first one (it is enough to consider only pairs of triangles
with maximal triangle side difference ≤ 2ε). Apply this transformation on S2

and construct a bipartite graph where the vertices are the points of S1 and of
transformed S2, and edges are created between the points with distance less
than βε. Apply a maximal bipartite matching algorithm to compute the largest
set of aligned points. The algorithm works in O(n3 ∗ n3 ∗ n2.5). For this method
the approximation ratio depends on the following alignment rule for construction
of a 3D transformation based on two triplets of points (p1, p2, p3) and (q1, q2, q3).

Local Reference Frame, LRF (p1, p2, p3): Define a local right hand coordinate
system s.t.: p1 = (0, 0, 0), (p2 − p1)/|(p2 − p1)| = (1, 0, 0), (p2 − p1) × (p3 −
p1)/|(p2 − p1)× (p3 − p1)| = (0, 0, 1).

Alignment Rule: Define a transformation T ′ that superimposes LRF (q1, q2, q3)
onto LRF (p1, p2, p3), i.e. p1 = T ′(q1), (p2−p1)/|p2−p1| = (T ′(q2)−T ′(q1))/|T ′(q2)−
T ′(q1)| and sign((p2−p1)×(p3−p1)) = sign((T ′(q2)−T ′(q1)×(T ′(q3)−T ′(q1)))

This rule gives the approximation ratio β ≤ 8 (γ = 1) [19, 23]. In this work
we extend the LCP problem to multiple sets and we call it the mLCP problem.
We also define the multiple LCP problem with respect to a pivot structure and
we call it the pmLCP problem.

Problem 2. (mLCP). Largest Common Point Set between K Sets. Given ε >
0, and K point sets Si, i = 1, ...,K, find transformations {Ti}, i = 2, ...,K,
and equal sized sets {S′

i ⊆ Si}, i = 1, ...,K, of maximal cardinality such that
d(Ti(S′

i), Tj(S′
j)) < ε (i 6= j, i, j = 1, ...,K, where T1 is identity transformation).

Problem 3. (pmLCP). Largest Common Point Set between K Sets with a Pivot
Structure. Given ε > 0, a pivot set S1 and K − 1 point sets Si, i = 2, ...,K, find
transformations {Ti}, i = 2, ...,K, and equal sized sets {S′

i ⊆ Si}, i = 1, ...,K,
of maximal cardinality such that d(S′

1, Ti(S′
i)) < ε, i = 2, ...,K.

Not surprisingly, both problems are NP-Hard, even in one dimensional space
for the case of exact congruence, i.e. ε = 0 [18]. In addition, for ε > 0 we face an-
other combinatorial problem. Consider a reduced mLCP/pmLCP problem where
the transformation search is omitted, i.e. the position of the structures is fixed.
Then, for two structures the problem is easily solved by a bipartite matching
algorithm. However, for K structures it requires to solve a K-dimensional match-
ing in Euclidean 3D space. In general graphs this problem is NP-Hard even for
three sets [25,26]. We show that it is still NP-Hard even for graphs defined on 3D
structures, where edges between the nodes from different partitions (structures)
are created if and only if the distance between the nodes is less than ε.



Definition 4. (K-partite-3D graph). Given ε > 0 and K point sets Si, i =
1, ...,K, a K-partite-3D graph G(S1, ..., SK) = (V,E) is defined as V = {∪K

i=1Si}
and E = {(pi, pj) : i 6= j, pi ∈ Si, pj ∈ Sj , d(pi, pj) ≤ ε}. A matching of a K-
partite-3D graph is a set of disjoint K-tuples {(pt1 , ..., ptK

) : pti ∈ Si, ptj ∈
Sj , (pti , ptj ) ∈ E}.

Definition 5. (K-partite-3D-pivot graph). Given ε > 0 and K point sets Si,
i = 1, ...,K, of which S1 is the pivot, a K-partite-3D-pivot graph G(S1, ..., SK) =
(V,E) is defined as V = {∪K

i=1Si} and E = {(p1, pj) : j > 1, p1 ∈ S1, pj ∈
Sj , d(p1, pj) ≤ ε}. A matching of a K-partite-3D-pivot graph is a set of disjoint
K-tuples {(pt1 , ..., ptK

) : pt1 ∈ S1, ptj ∈ Sj , (pt1 , ptj ) ∈ E}.

Theorem6. The maximal cardinality matching problem in K-partite-3D and
K-partite-3D-pivot graphs is NP-Hard.

A Sketch of the Proof. First, we briefly present a reduction from 3-SAT to
3-partite matching in general graphs (for more details see [25]), and then extend
it for the instances of K-partite-3D and K-partite-3D-pivot graphs.

An instance of the 3SAT problem includes a set of variables U = {u1, u2, ..., un}
and a set of clauses C = {c1, c2, ..., cm}. Each clause contains three literals of
variables U . The goal of the reduction is to construct three disjoint sets S1, S2

and S3 of equal cardinality, and a set of edges M ⊆ S1 × S2 × S3 such that M
contains a perfect matching if and only if C is satisfiable.

Three classes of edges are created, T - “truth setting and fan-out”, C -
“satisfaction testing” and G - “garbage collection”. The components of T are
constructed for each variable ui. Denote ui[j] to be a variable ui in clause j.

T t
i = {(ūi[j], ai[j], bi[j]) : 1 ≤ j ≤ m}

T f
i = {(ui[j], ai[j + 1], bi[j]) : 1 ≤ j ≤ m} ∪ {(ui[m], ai[1], bi[m])}

ūi[j], ui[j] ∈ S1, ai[j] ∈ S2, bi[j] ∈ S3

The component T forces a matching to choose between setting ui true and
setting ui false. Any perfect matching will have to include either all triplets
from T t

i or all triplets from T f
i , see Figure 1 (a). Next, for each clause cj a

component Cj aims to select a truth setting for one of its three literals: Cj =
{(ui[j], s2[j], s3[j]) : ui ∈ cj} ∪ {(ūi[j], s2[j], s3[j]) : ūi ∈ cj}, where s2[j] ∈ S2

and s3[j] ∈ S3.
Thus, only one triplet can be contained in any matching assigning the clause

cj to true setting. Finally, the “garbage collection” component aims to compen-
sate the unequal number of nodes created so far in S1 and in other two partitions
S2 and S3: G = {(ui[j], g2[k], g3[k]), (ūi[j], g2[k], g3[k]) : 1 ≤ k ≤ m(n − 1), 1 ≤
i ≤ n, 1 ≤ j ≤ m, g2[j] ∈ S2, g3[j] ∈ S3}.

To summarize, the edges are defined as: T = ∪n
i=1(T

t
i ∪T f

i ), C = ∪m
j=1C

j , M =
T ∪C∪G. This completes the reduction from 3-SAT to 3-partite matching. Next,
we adapt the above reduction for K-partite-3D type graphs.

Notice that the constructed graph M does not belong to the K-partite-3D
type of graphs. Only the component T can be drawn in 2D to satisfy this prop-
erty, i.e. only the point triplets from T can be placed within ε distance one from



each other (see Figure 1 (a))4. The problem is that the nodes of type s2, s3 and
g2, g3 can not be placed in 3D so that their distance from the different nodes of
type ui is less than ε. To resolve this problem we introduce long-distance-edge
gadgets. The basic principle is illustrated in Figure 1 (b). The edge (x, y, z) can
be elongated to any distance (z transforming to z′) preserving the property for
matching. Also, we can bend to 90o any long-distance-edge. We can bend an edge
in two different ways. The first one, as illustrated in Figure 1 (b), continues the
edge in the same 2D plane. The second option, bends the edge so that its two
parts are in two perpendicular 2D planes (not illustrated). Care should be taken
at the bending part, e.g. nodes a and b from Figure 1 (b) should be placed at a
distance larger than ε, otherwise it introduces ambiguity for matching. The sec-
ond gadget aims to split edges going from nodes of type s2, s3 (g2, g3). Assume
we have three edges (ui[j], s2[j], s3[j]), (ut[j], s2[j], s3[j]) and (up[j], s2[j], s3[j]).
Figure 1 (c) illustrates how these three edges can be constructed. Triangles il-
lustrate possible matching. This gadget guarantees that any perfect matching
will select only one node u[j] with combination of nodes from this gadget. How-
ever, there are many long-distance-edges coming to nodes of type u[j] and there
is a need to join them. The split gadget is not suitable for this task, therefore
we introduce a join gadget (see Figure 1 (d)). The join gadget guarantees that
any perfect matching will connect a node u[j] to only one pair of type s2, s3

(g2, g3). To complete the construction we need to show how to place in 3D
all the long-distance-edges and connections between them. The idea is to place
the component T in the plane (x, y, 0) (zero level), to place the components Cj

on negative levels (x, y,−lj) and the components Gk on positive levels (x, y, lk).
The long-distance-edges are constructed between the levels like water pipes. The
whole construction requires polynomial number of components. Due to lack of
space we omit the exact details, which will appear elsewhere. Notice, that by se-
lecting the first partition S1 as a pivot structure and deleting the edges between
S2 and S3 the same reduction works as well for the instances of K-partite-3D-
pivot graphs.

The MultiBind Algorithm

Input Representation: Physico-Chemical Properties. Selection of the
proper representation is crucial for the biochemical significance of the recog-
nized patterns. Given the atomic coordinates of a protein structure, we follow
Schmitt et al. [17] and for each amino acid we group atoms with similar physico-
chemical properties to functional groups. These are localized by 3D points in
space, denoted as pseudocenters. Each pseudocenter represents one of the follow-
ing properties important for protein-ligand interactions: hydrogen-bond donor,
hydrogen-bond acceptor, mixed donor/acceptor, hydrophobic aliphatic and aro-
matic(pi) contacts. Since both backbone and side-chain atoms are considered,
4 In the 3-SAT to 3-partite matching reduction, the definition of a hypergraph edge

as a triplet of points (a,b,c) is equivalent to three edges (a,b), (a,c) and (b,c) in a
regular graph.



Fig. 1.

each amino acid is represented by a set of such pseudocenters. We construct
the smooth molecular surface as implemented by Connolly [28] and retain only
pseudocenters that represent at least one surface exposed atom. When consid-
ering binding sites, we refer only to the surface regions that are within 4Å from
the binding partner. In practice, a comparison of the spatial locations of the
retained pseudocenters is not sufficient for the accurate prediction of protein-
ligand interactions. Thus, we are interested in the maximal number of matching
pseudocenters that are most similar in all the physico-chemical and geometrical
aspects. For each pair of pseudocenters, p and q, we define a scoring function
PC-Score(p,q) which measures the similarity of the properties important for the
specific type of interaction in which they can participate (PC-Score(S1, S2) is
defined as a sum of the matched point scores). The exact calculations and de-
fault parameters are detailed in Appendix A. Therefore, practically, we look for
a solution for a weighted pmLCP problem that we define as5:

Problem 7. (Max-Min Weighted pmLCP Problem) Given ε > 0, a scoring
function PC-Score, a pivot set S1 and K−1 point sets Si, i = 2, ...,K find trans-
formations {Ti}, i = 2, ...,K, and equal sized sets {S′

i ⊆ Si}, i = 1, ...,K, such
that d(S′

1, Ti(S′
i)) < ε, i = 2, ...,K, and miniPC-Score(S′

1, Ti(S′
i)) is maximal.

The Pattern Matching Algorithm. There are three major computational
steps: (1) generation of 3D transformations and potential points for matching;
(2) combinatorial search for a combination of 3D transformations that gives
the highest scoring common 3D core (Traversal stage); and (3) computation of
K-partite-3D-pivot matching.
5 In our implementation we consider only the pmLCP problem since the K-partite-3D

matching of the mLCP problem introduces additional complications even for greedy
approaches. We’ll address this problem somewhere else.



In our approach we follow the efficient strategy of the Geometric Hashing
method [27]. The Geometric Hashing method consists of two stages, preprocess-
ing and recognition. At the preprocessing stage each triplet of pseudocenters,
(a, b, c), from each molecule except the pivot is considered as a local reference
frame r = LRF (a, b, c). The coordinates of the other points are calculated with
respect to the local reference frame r. This information is stored in a Geomet-
ric Hash Table. The key to the hash table is (xr, yr, zr, p), where (xr, yr, zr)
are point coordinates with respect to the local reference frame r, and p is the
physico-chemical property of the pseudocenter. Only pseudocenters with the
same property can be matched 6. The data stored in the hash table includes the
key itself and the identifiers of the molecule and the reference frame.

In the recognition stage the same process as in the preprocessing stage is re-
peated for the pivot molecule. However, instead of storing data in the hash table,
all entries close to the key within radius ε and with the same physico-chemical
property are retrieved. For each reference frame r of the pivot structure a vot-
ing table is created. It counts the number of matched points for each reference
frame stored in the hash table. For simplicity, we explain the method for the
pure geometrical case, i.e. for the pmLCP problem. If a reference frame r′ from
structure i received v votes that means the following. Define a 3D transformation
Tr,r′ that superimposes the triplets of points r′ on r according to the Alignment
Rule. Applying Tr,r′ on Si will result in v point pairs from the pivot and i struc-
ture that are within ε distance. Thus, the size of a maximal matching between
Spivot and Tr,r′(Si) is less than v. Therefore, for the next step it is enough to
consider only reference frames that have received a number of votes equal or
greater than M∗, the size of the largest multiple solution found so far (initially
M∗ = 0). For each survived transformation T we store the list of matched points,
{(p, q) : p ∈ Spivot, q ∈ Si, |p− T (q)| < ε}.

Traversal stage. For each reference frame of the pivot structure we create a
combinatorial bucket that contains transformations that received a high number
of votes. Namely, a combinatorial bucket for the reference frame r is defined
as CBr = {T 2, T 3, ..., TK}, where T i = {Tij} is a set of transformations for
structure i that received v > M∗ votes. A multiple alignment is a combination of
K−1 transformations, (T 2

i2
, T 3

i3
, ..., TK

iK
). The number of all possible combinations

equals to |T 2| ∗ |T 3| ∗ ... ∗ |TK |, which is exponential with K. However, we have
implemented a branch-and-bound traversal method which in practice is very
efficient. First we provide some definitions. Given a transformation vector of the
first t structures, T = (Ti2 , ..., Tit), create a t-partite-3D-pivot graph, G(T ) =
G(S1, Ti2(S2), ..., Tit(St)). Define single sides of the graph G(T ), G(T )[j] = {pj :
pj ∈ Sj , ∃p1 ∈ S1 (p1, pj) ∈ G(T ) and ∀k ≤ t ∃pk ∈ Sk (p1, pk) ∈ G(T )}.
Let M(G(T )) be a maximal t-partite-3D-pivot matching of the graph G(T ).
Obviously, M(G(T )) ≤ M(G(Spivot, Tij

(Sj))) ≤ |G(T )[j]|.
Given a combinatorial bucket CB = {T 2, T 3, ..., TK} we iteratively tra-

verse it in the following manner. Assume that we have created a vector T =

6 Pseudocenters that can function both as hydrogen bond donors and acceptors are
encoded twice, once as donors and once as acceptors.



(Ti2 , Ti3 , ..., Tit
), Tij

∈ T j . We try to extend it with a transformation Tit+1 ∈
T t+1, T ∗ = (Ti2 , Ti3 , ..., Tit

, Tit+1). Clearly, |G(T ∗)[j]| ≤ |G(T )[j]|, j = 2, ..., t.
Therefore, if for some index j holds |G(T ∗)[j]| ≤ M∗, then we can disregard the
vector T ∗ and start to build another combination of transformations. Essentially,
we continue with the vector T and try to add another transformation from T t+1,
and so on. The number of traversals may be exponential, however in practice the
M(G(T )) drops very quickly below M∗ as the algorithm advances in iterations
in the recognition stage 7. Still, the theoretical bound is O(n3n3(K−1)).

K-partite-3D-pivot Matching. During the traversal stage, once we reach the
last bucket we have a uniquely defined K-partite-3D-pivot graph. The next step
is to solve the matching problem. As we have shown above this problem is NP-
Hard. We apply a greedy method, which iterates over pivot points and selects
K-tuples, from non-selected points. This method gives a K approximation to
the largest matching since at each greedy selection of K-tuples it may violate at
most K-1 nodes that may belong to the optimal matching8. In the context of
molecular structures for small ε (around 3Å) the maximal node degree is bound
by a small constant. Therefore the time complexity of the greedy method is
O(Kn).

Theorem8. MultiBind algorithm is an (ε, 8,K)-approximation9 for Problem
3 and has time complexity O(n3KnK).

In practice, when solving the Max-Min Weighted pmLCP we introduce the
following modifications. First, we define M∗ to be the highest physico-chemical
score of the multiple solution found so far. Given equally sized sets (S1, ..., St)
the physico-chemical score M is defined as in Problem 4 by M = minjPC-
Score(S1, Sj), j = 2...t. When traversing the combinatorial buckets, instead of
looking at the cardinality of the side j, |G(T ∗)[j]|, we estimate the upper bound
of PC-Score(S1, Tj(Sj)) as PC-Score(G(T ∗)[j])=

∑
q∈Tj(Sj)

maxpPC-Score(p, q).
Therefore, we disregard vectors T ∗ for which PC-Score(G(T ∗)[j]) ≤ M∗ for some
j. We retain a user defined number of high scoring solutions, which are then
evaluated by an additional Overall Surface Scoring [7] function which compares
the corresponding surfaces of the binding sites.

Biological Results

Below we present examples of application of MultiBind for recognition of pat-
terns required for binding of different ligands. In each of the presented examples,
7 In the second example from the Results section, the total number of combinations

for all combinatorial buckets is about 1.3 · 1011, which shows the exponential nature
of the problem. The filtering procedure leaves only 246310 combinations of multiple
alignments. Most filtering is done already at the third structure (t = 3).

8 The best known approximation algorithm for hyper-graphs gives K/2 ratio [29]
9 It is possible to reduce the β = 8 approximation to any accuracy cβ, c ≤ 1, by

applying a discretization technique of the transformational space [30, 31]. However,
the payoff is increasing the time complexity factor proportional to (1/c)6.



we describe the details of a single solution that received the highest score. An
additional example of application of MultiBind to proteins of trypsin and sub-
tilisin folds is presented by Mintz et al [32]. The running times are measured on
a standard PC, Intel(R) Pentium(R) IV 2.60GHz CPU with 2GB RAM. The
default distance threshold for the ε-congruence is 3.0Å .

ATP/ANP Binding Sites of Protein Kinases. To validate the per-
formance of the method on a well studied example we have selected a set
of ATP/ANP binding sites extracted from 5 different protein kinases: cAMP-
dependent PK (1cdk), Cyclin-dependent PK, CDK2 (1hck), Glycogen phospho-
rylase kinase (1phk), c-Src tyrosine kinase (2src), Casein kinase-1, CK1 (1csn).
We applied MultiBind to perform a multiple alignment of the corresponding
ATP/ANP binding sites. These were recognized to share 14 pseudocenters, 4 of
which are created by amino acids with the same identity (see Figure 2(a)). The
RMSD between the adenine moieties (which are not a part of the input and
are used for verification only) under these transformations is less than 1.4Å .
The average binding site size is 76 pseudocenters, and the running time is 58
minutes. It must be noted that since these proteins share similar overall folds,
the 3D superposition problem of the binding sites can be solved by multiple
backbone alignment methods [11,12]. However, these methods do not give solu-
tion to the K-partite-3D matching problem of physico-chemical features (since
these are not-ordered on the protein surface). Below we present two examples for
which both the superimposition and the matching problems can not be solved
by standard protein backbone alignment methods.

Transition State Analogue Binding Sites. We have selected five binding
sites complexes with endo-oxabicyclic transition state analogues (TSA/BAR).
The binding sites were extracted from proteins of three different folds: (1) Cho-
rismate mutase II (1ecm, 4csm, 3csm); (2) Bacillus chorismate mutase-like (2cht);
(3) Immunoglobulin-like beta-sandwich (1fig). Figure 2(b) presents 8 functional
groups that were recognized by MultiBind to be shared by all the binding sites.
Two of the compared proteins (1ecm and 4csm) were previously aligned by
Schmitt et al [17]. Most of the pseudocenters recognized by MultiBind are in-
deed a subset of those obtained by their pairwise alignment method (except for
two donors contributed by 1ecm:Arg28). However, 10 of the functional groups
common to a pair of chorismate mutases according to their study, were not rec-
ognized to be common to the five structures compared by MultiBind. Alignment
of multiple structures with different folds helps to identify the minimal set of
features required for the binding of endo-oxabicyclic transition state analogues.
The average size of a binding site is 29, and the running time is 8 minutes.

Estradiol Binding Sites. Estradiol molecules are known to bind to pro-
tein receptors with different overall sequences and folds. The dataset of this
study was comprised of the binding sites of 7 proteins from 4 different folds: (1)
Nuclear receptor ligand-binding domain (3ert, 1a52, 1err, 1qwr); (2) NAD(P)-
binding Rossmann-fold (1fds); (3) Concanavalin A-like lectins/glucanases (1lhu);
(4) P-loop containing nucleoside triphosphate hydrolases (1aqu). Two of these
structures were crystallized with Raloxifen (1err) and 4-hydroxytamoxifen (3ert),



(a) (b) (c)

Fig. 2. Multiple alignments done by MultiBind. Matched pseudocenters are represented
as balls. Hydrogen bond donors are blue, acceptors - red, donors/acceptors - green,
hydrophobic aliphatic - orange and aromatic - white. Matched pseudocenters (backbone
or side-chain) from identical amino acids are marked by ∗. The ligand molecules are
presented for verification purpose only and are not a part of the input to MultiBind.
(a) Multiple alignment of 5 ATP/ANP binding sites, the labeling is according to 1cdk.
(b) Multiple alignment of five endo-oxabicyclic transition state analogue binding sites.
The labeling and the surface (depicted in dots) is according to 1ecm. (c) Multiple
alignment of eight estradiol binding sites, the labeling is according to 3ert.

which are different from estradiol. In spite of the conformational changes re-
quired to accommodate these ligands, MultiBind has recognized 6 functional
groups shared by all the binding sites (see Figure 2(c)). One of them is a con-
served Phenylalanine (1lhu:Phe67) with an aromatic property shared by all the
binding sites. The mean binding site size is 44 pseudocenters and the running
time is 15 minutes.

In order to compare the presented results with those obtained by super-
imposition of ligand molecules, we performed such an alignment for the above
mentioned examples (for the complexes with the same binding partners). In the
last two cases alignment by ligands failed to recognize any significant pattern
(less than 3 pseudocenters), while MultiBind identified patterns of size 8 and 6.

Conclusions

We have presented a novel computational method, MultiBind, for recognition of
physico-chemical binding patterns. The method is practically efficient for mul-
tiple alignment of protein binding sites and guarantees to detect an approxi-
mate solution for the case of pure geometrical problem. We have shown that the
matching problem of K-partite-3D/K-partite-3D-pivot graphs is NP-Hard. We
have presented an efficient filtering procedure which in our applications practi-
cally overcomes the exponential number of multiple combinations.

We have applied MultiBind to several biological targets, such as the binding
sites of estradiol, ATP/ANP and transition state analogues. MultiBind is the



first method that performs multiple alignment of binding sites in the absence of
overall sequence, fold or binding partner similarity. To the best of our knowledge,
the presented results can not be obtained by any other existing computational
method. We hope that it will be a useful tool in prediction of molecular recog-
nition and in identification of consensus binding patterns. These are important
for improvement of architectures of databases of binding sites and development
of efficient ranking schemes.

However, from the biological standpoint the method has several limitations.
First, there is no explicit treatment of protein flexibility which is introduced
only through a set of thresholds to allow variability in locations. Second, due
to the hardness of the problem the method is practically limited to point sets
of size about 100. Third, scoring functions are known to be one of the major
problems in all types of in silico predictions. The scoring function of MultiBind
suffers from the same limitations [7]. We intend to address these challenges in
our future research.
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Appendix A: Physico-Chemical Scoring

Let p and q be the two matched pseudocenters.

• dist(p, q) - the distance between p and q after the superimposition. Default threshold

for the maximal distance is ε =3.0Å.

• chem(p) - the physico-chemical property of the point p. There are three types of prop-

erties: Hydrogen Bonding (HB), Aliphatic Hydrophobic (ALI) and Aromatic (PII).

• charge(p) - the partial atomic charge of the atom p, which can form hydrogen bonds.

charge(p, q) = |charge(p) − charge(q)|.
• shape(p) - the average curvature of the surface region created by p. Calculated

as an average of the solid angle shape functions [33] with spheres of radius 4,5,6

and 7Å . The sphere centers are located at projection point of p to the surface.

shape(p, q) = |shape(p) − shape(q)|.
• nS(p) - normal vector at projection point of p to the surface, nS(p, q) = nS(p) ·nS(q).

• nPII(p) - for aromatic pseudocenters denotes the normal to the plane of the aromatic

ring. nPII(p, q) = nPII(p) · nPII(q).

• vALI(p, q) - the overlap of the hydrophobic group spheres of p and q, approximated

by the difference between sum of radiuses and the distance between the centers.

Each pair of matched pseudocenters is assigned a score according to the similarity of



the properties important for the specific type of interaction:

PC-Score (p, q) =


0, dist(p, q) > ε or chem(p) 6= chem(q)
0, shape(p, q) > 0.2 or nS(p, q) > 0.2
dist(p, q)/(1 + charge(p, q)) chem(p) = HB
dist(p, q)/(1 + shape(p, q) + nPII(p, q)) chem(p) = PII
(dist(p, q) + vALI(p, q))/(2 + 20 ∗ shape(p, q)) chem(p) = ALI
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