
JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 1

EMatch: Discovery of High Resolution

Structural Homologues of Protein Domains In

Intermediate Resolution Cryo-EM Maps

Keren Lasker, Oranit Dror, Maxim Shatsky, Ruth Nussinov, and Haim Wolfson

APPENDIX I

EFFICIENT NCCC CALCULATION IN REAL SPACE

Given a target grid f of size N and a template grid t of size n = nx · ny · nz, we describe

an efficient calculation of NCCC values (Equation 1) for all voxels in f in Θ(nN) time. The

algorithm accelerates the practical running time of the naive calculation and does not affect the

accuracy of the results when the template grid’s reference frame is parallel to the principal axes

of the shape it holds. We recommend to use this algorithm in cases where n << N , since

otherwise calculating the convolution in frequency space is much more efficient.

As demonstrated in [?], the numerator in the NCCC formula (Equation ??) is a convolution

between f and t′, where t′ = t− t̄. This convolution can be calculated in real space in Θ(nN)

· K. Lasker, O. Dror, M. Shatsky and H.J. Wolfson are with the School of Computer Science, Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: {kerenl,oranit,maxshats,wolfson}@post.tau.ac.il

· R. Nussinov is with the Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel

Aviv University, Tel Aviv 69978, Israel and with the Basic Research Program, SAIC-Frederick, Center for Cancer Research

Nanobiology Program, NCI-Frederick, Bldg 469, Rm 151, Frederick, MD 21702, USA. Email: ruthnu@post.tau.ac.il

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 2

time. The calculation of the term under the square root in the denominator can be divided into

the calculation of two independent factors, σt and σf :

σf (x) =
∑
uj∈U

(f(uj + x)− f̄U(x))2 (1)

σt =
∑
uj∈U

(t(uj)− t̄)2

Note that σt is constant. We show that σf (x) can be efficiently calculated in Θ(N) time for

all voxels. For each voxel x = (xx, xy, xz) in f the following holds:

σf (x) = (
∑
uj∈U

f 2(uj + x))− 1

n
(
∑
uj∈U

f(uj + x))2

= s2(x)− 1

n
s1(x)2 (2)

The values of s1 for all voxels of the target grid are recursively calculated in linear time as

follows. Given s1(x), s1(x+ lz) (where lz is a step of one voxel in the Z-axis direction) is equal

to: s1(x) − bxy(x) + bxy(x + (nz − 1) · lz), where bxy(x) is the sum of all voxels in the EM

grid such that their centers {(vx, vy, vz)} satisfy {(vx, vy, vz)|(vx, vy, vz) ∈ U + x, vz = xz}. The

{bxy} values are calculated in Θ(n) [?]. Similar manipulations are applied on s2.

APPENDIX II

SATISFACTORY CYLINDER SEGMENTATION

We are given an undirected graph G = (V,E) and a cylinder predicate D, as defined in ??.

The output is a satisfactory cylinder segmentation of G.

Algorithm Description. We begin with an initial segmentation S = {{vi}}|V |−1
i=0 such that

each vi is associated with a single non-background voxel from the input EM grid. Then, we join

pairs of regions until no pair of regions can be joined.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 3

Specifically, the satisfactory cylinder segmentation is constructed from a number of seed

vertices using a variant of Breadth First Search (BFS) as follows. First, we sort all vertices

according to the score of their associated voxels (as defined in the method section) and add

them to a seed-queue in descending order. Then, the vertex, R, at the top of the seed-queue is

given as a seed vertex for the BFS traversal. In each iteration of the traversal we join to R a

newly discovered vertex Ri that satisfies D(R ∪ Ri). The neighboring vertices of Ri in G are

explored only if D(R∪Ri) is satisfied. If Ri has already been discovered by another seed vertex,

we add it to a visited-queue of R. When no vertex can be joined to R we mark all the vertices

that have been joined to R as being discovered and remove them from the seed-queue.

Next, we iterate over the vertices {Rj} in the visited-queue and examine whether they can

be joined to R. If D(Rj ∪ R) is satisfied, we join Rj to R. Finally, if R was joined with any

node from the visited-queue, we assign R to be the new Rk, where Rk is a region with lowest

region index that was joined with R and we update the edges of G accordingly. We repeat the

BFS procedure until the seed-queue is empty.

Theorem 1: The algorithm results in a satisfactory cylinder segmentation.

Proof: S is not too Coarse. We show that S is not too coarse under the assumption that

D is true for pairs of connected regions. Let us assume, on the contrary, that S is too coarse.

This means that there is a refinement S ′ 6= S that is not too fine. By definition, each R′i ∈ S ′ is

contained or equal to some Rj ∈ S and there is at least one region Rk ∈ S that is broken into

{R′ki
∈ S ′}li=1 such that R′ki

⊂ Rk and
l⋃

i=0

R′ki
= Rk. Since Rk satisfies D, Rk is a connected

component. Thus, for each R′ki
⊂ Rk, there it at least one R′kj

⊂ Rk such that R′ki
and R′kj

are neighboring regions. Since D is true for connected regions, R′ki
∪ R′kj

satisfies D. Let us

assume that R′ki
was constructed after R′kj

. According to the algorithm the two regions should

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 4

have been linked after R′kj
was inserted to the visited-queue of R′ki

, which is a contradiction.

S is not too Fine. We show that S is not too fine under the assumption that D is true for

pairs of connected regions. Let us assume, on the contrary, that S is too fine. This means that

there is at least one subset of regions {Rki
∈ S}li=1 such that each Rki

satisfied the cylinder-like

predicate and S ′ = S ∪ (
l⋃

i=1

Rki
) \ {Rk1 , ..., Rkl

} is a valid segmentation. Thus,
l⋃

i=1

Rki
is a

connected region since S ′ and as shown in the first section of the proof should have been linked

into a single region according to the algorithm, which is a contradiction.

Complexity Analysis. We show that the complexity of the satisfactory cylinder segmentation

algorithm is O(|V | log |V |). First we sort the vertices in V according to the scores of their

associated voxels in Θ(|V | log |V |) time. Iterating over all vertices in the seed-queue is done in

O(|V |) time. Since we visit each edge a constant amount of times and the cylinder predicate

verification is done in constant time the total running time of the graph traversals is O(|V |)

(since |E| is linear in |V |).

We show that the verification of whether Ri ∪ Rj satisfies D can be done in constant time.

Each region Ri maintains its principal components and direction-array. The direction-array stores

all of the most likely helix orientations of the region’s voxels. For a given sampling angle ρ,

the size of the direction-array is bounded by π
4ρ

, which for the default sampling (ρ = π/12)

equals to eighteen. Given a pair of regions Ri and Rj with pre-calculated principal components

and direction-arrays, verification of D(Ri ∪ Rj) requires constant time. Verification of the first

and second conditions of the predicate requires the calculation of the principal components of

Ri ∪Rj . The principal components of a set S of points in R3 are the eigen vectors of its 3× 3

covariance matrix. Assuming that we have already calculated the average point and covariance

matrix of Si and Sj , we can calculate the average point and the covariance matrix of Si ∪ Sj in

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 5

O(1). Hence, the calculation of the principal components of Ri ∪ Rj is done in constant time.

Verification of the second condition of D is linear in the number of elements in the direction-

arrays of both Ri and Rj . Since this number is bounded by π
2ρ

and does not depend on the size

of the input EM grid, the time complexity of this test is practically constant. The third condition

is implicitly satisfied by the cylinder segmentation method, since in each iteration we link only

neighboring regions.

